These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Purification, composition, and physical properties of a thermal hysteresis "antifreeze" protein from larvae of the beetle, Tenebrio molitor. Tomchaney AP, Morris JP, Kang SH, Duman JG. Biochemistry; 1982 Feb 16; 21(4):716-21. PubMed ID: 7074035 [Abstract] [Full Text] [Related]
3. A complex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor. Liou YC, Thibault P, Walker VK, Davies PL, Graham LA. Biochemistry; 1999 Aug 31; 38(35):11415-24. PubMed ID: 10471292 [Abstract] [Full Text] [Related]
5. Discovery of Hyperactive Antifreeze Protein from Phylogenetically Distant Beetles Questions Its Evolutionary Origin. Arai T, Yamauchi A, Miura A, Kondo H, Nishimiya Y, Sasaki YC, Tsuda S. Int J Mol Sci; 2021 Mar 31; 22(7):. PubMed ID: 33807342 [Abstract] [Full Text] [Related]
6. HEAT INDUCIBLE EXPRESSION OF ANTIFREEZE PROTEIN GENES FROM THE BEETLES Tenebrio molitor AND Microdera punctipennis. Li J, Ma W, Ma J. Cryo Letters; 2016 Mar 31; 37(1):10-8. PubMed ID: 26964020 [Abstract] [Full Text] [Related]
8. Cold hardiness in relation to trace metal stress in the freeze-avoiding beetle Tenebrio molitor. Pedersen SA, Kristiansen E, Hansen BH, Andersen RA, Zachariassen KE. J Insect Physiol; 2006 Aug 31; 52(8):846-53. PubMed ID: 16806256 [Abstract] [Full Text] [Related]
9. Characterization and cloning of a Tenebrio molitor hemolymph protein with sequence similarity to insect odorant-binding proteins. Graham LA, Tang W, Baust JG, Liou YC, Reid TS, Davies PL. Insect Biochem Mol Biol; 2001 Apr 27; 31(6-7):691-702. PubMed ID: 11267907 [Abstract] [Full Text] [Related]
10. Effects of targeting eye color in Tenebrio molitor through RNA interference of tryptophan 2,3-dioxygenase (vermilion): Implications for insect farming. Oppert B, Chu FC, Reyna S, Pinzi S, Adrianos S, Perkin L, Lorenzen M. Arch Insect Biochem Physiol; 2019 May 27; 101(1):e21546. PubMed ID: 30908737 [Abstract] [Full Text] [Related]
11. Characterization of antifreeze protein gene expression in summer spruce budworm larvae. Qin W, Tyshenko MG, Doucet D, Walker VK. Insect Biochem Mol Biol; 2006 Mar 27; 36(3):210-8. PubMed ID: 16503482 [Abstract] [Full Text] [Related]
12. Enhancement of insect antifreeze protein activity by solutes of low molecular mass. Li N, Andorfer CA, Duman JG. J Exp Biol; 1998 Aug 27; 201(Pt 15):2243-51. PubMed ID: 9662495 [Abstract] [Full Text] [Related]
13. Heritability of hsp70 expression in the beetle Tenebrio molitor: Ontogenetic and environmental effects. Lardies MA, Arias MB, Poupin MJ, Bacigalupe LD. J Insect Physiol; 2014 Aug 27; 67():70-5. PubMed ID: 24968147 [Abstract] [Full Text] [Related]
14. Differential expression of two antifreeze proteins in the desert beetle Anatolica polita (Coleoptera: Tenebriondae): seasonal variation and environmental effects. Ma J, Wang J, Mao XF, Wang Y. Cryo Letters; 2012 Aug 27; 33(5):337-48. PubMed ID: 23224367 [Abstract] [Full Text] [Related]
15. Antifreeze proteins in the primary urine of larvae of the beetle Dendroides canadensis. Nickell PK, Sass S, Verleye D, Blumenthal EM, Duman JG. J Exp Biol; 2013 May 01; 216(Pt 9):1695-703. PubMed ID: 23348942 [Abstract] [Full Text] [Related]
16. Differential scanning calorimetric analysis of antifreeze protein activity in the common mealworm, Tenebrio molitor. Hansen TN, Baust JG. Biochim Biophys Acta; 1988 Nov 23; 957(2):217-21. PubMed ID: 3191140 [Abstract] [Full Text] [Related]