These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


262 related items for PubMed ID: 11034835

  • 1. Energy expenditure of heavy to severe exercise and recovery.
    Scott CB.
    J Theor Biol; 2000 Nov 21; 207(2):293-7. PubMed ID: 11034835
    [Abstract] [Full Text] [Related]

  • 2. Interpreting energy expenditure for anaerobic exercise and recovery: an anaerobic hypothesis.
    Scott CB.
    J Sports Med Phys Fitness; 1997 Mar 21; 37(1):18-23. PubMed ID: 9190121
    [Abstract] [Full Text] [Related]

  • 3. Direct and indirect calorimetry of lactate oxidation: implications for whole-body energy expenditure.
    Scott CB, Kemp RB.
    J Sports Sci; 2005 Jan 21; 23(1):15-9. PubMed ID: 15841591
    [Abstract] [Full Text] [Related]

  • 4. High levels of whole-body energy expenditure are associated with a lower coupling of skeletal muscle mitochondria in C57Bl/6 mice.
    van den Berg SA, Nabben M, Bijland S, Voshol PJ, van Klinken JB, Havekes LM, Romijn JA, Hoeks J, Hesselink MK, Schrauwen P, van Dijk KW.
    Metabolism; 2010 Nov 21; 59(11):1612-8. PubMed ID: 20494374
    [Abstract] [Full Text] [Related]

  • 5. Interaction between aerobic and anaerobic metabolism during intense muscle contraction.
    Greenhaff PL, Timmons JA.
    Exerc Sport Sci Rev; 1998 Nov 21; 26():1-30. PubMed ID: 9696983
    [No Abstract] [Full Text] [Related]

  • 6. [Energy yield during physical exertion].
    Schmid P, Berg A, Lehmann M, Schwaberger G, Keul J.
    Wien Med Wochenschr; 1985 May 31; 135(9-10):228-34. PubMed ID: 4036144
    [Abstract] [Full Text] [Related]

  • 7. Prior heavy exercise eliminates VO2 slow component and reduces efficiency during submaximal exercise in humans.
    Sahlin K, Sørensen JB, Gladden LB, Rossiter HB, Pedersen PK.
    J Physiol; 2005 May 01; 564(Pt 3):765-73. PubMed ID: 15746165
    [Abstract] [Full Text] [Related]

  • 8. Energy system contribution to 1500- and 3000-metre track running.
    Duffield R, Dawson B, Goodman C.
    J Sports Sci; 2005 Oct 01; 23(10):993-1002. PubMed ID: 16194976
    [Abstract] [Full Text] [Related]

  • 9. ATP and heat production in human skeletal muscle during dynamic exercise: higher efficiency of anaerobic than aerobic ATP resynthesis.
    Krustrup P, Ferguson RA, Kjaer M, Bangsbo J.
    J Physiol; 2003 May 15; 549(Pt 1):255-69. PubMed ID: 12651917
    [Abstract] [Full Text] [Related]

  • 10. Estimating energy expenditure for brief bouts of exercise with acute recovery.
    Scott CB.
    Appl Physiol Nutr Metab; 2006 Apr 15; 31(2):144-9. PubMed ID: 16604132
    [Abstract] [Full Text] [Related]

  • 11. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.
    Korzeniewski B, Zoladz JA.
    Biochem J; 2004 May 01; 379(Pt 3):703-10. PubMed ID: 14744260
    [Abstract] [Full Text] [Related]

  • 12. Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle.
    Korzeniewski B, Liguzinski P.
    Biophys Chem; 2004 Jul 01; 110(1-2):147-69. PubMed ID: 15223151
    [Abstract] [Full Text] [Related]

  • 13. Influence of acute alcohol load on metabolism of skeletal muscles--expired gas analysis during exercise.
    Shiraishi K, Watanabe M, Motegi S, Nagaoka R, Matsuzaki S, Ikemoto H.
    Alcohol Clin Exp Res; 2003 Aug 01; 27(8 Suppl):76S-78S. PubMed ID: 12960513
    [Abstract] [Full Text] [Related]

  • 14. Skeletal muscle glucose uptake during exercise: how is it regulated?
    Rose AJ, Richter EA.
    Physiology (Bethesda); 2005 Aug 01; 20():260-70. PubMed ID: 16024514
    [Abstract] [Full Text] [Related]

  • 15. An acetyl group deficit limits mitochondrial ATP production at the onset of exercise.
    Greenhaff PL, Campbell-O'Sullivan SP, Constantin-Teodosiu D, Poucher SM, Roberts PA, Timmons JA.
    Biochem Soc Trans; 2002 Apr 01; 30(2):275-80. PubMed ID: 12023864
    [Abstract] [Full Text] [Related]

  • 16. Respiratory indices by gas analysis and fat metabolism by indirect calorimetry in normal subjects and triathletes.
    Steding K, Buhre T, Arheden H, Wohlfart B.
    Clin Physiol Funct Imaging; 2010 Mar 01; 30(2):146-51. PubMed ID: 20095977
    [Abstract] [Full Text] [Related]

  • 17. Rapid metabolic recovery following vigorous exercise in burrow-dwelling larval sea lampreys (Petromyzon marinus).
    Wilkie MP, Bradshaw PG, Joanis V, Claude JF, Swindell SL.
    Physiol Biochem Zool; 2001 Mar 01; 74(2):261-72. PubMed ID: 11247745
    [Abstract] [Full Text] [Related]

  • 18. Effects of prior exercise on muscle metabolism during sprint exercise in horses.
    McCutcheon LJ, Geor RJ, Hinchcliff KW.
    J Appl Physiol (1985); 1999 Nov 01; 87(5):1914-22. PubMed ID: 10562637
    [Abstract] [Full Text] [Related]

  • 19. Brain glucose and lactate uptake during exhaustive exercise.
    Secher NH, Quistorff B.
    J Physiol; 2005 Oct 01; 568(Pt 1):3. PubMed ID: 16096335
    [No Abstract] [Full Text] [Related]

  • 20. Pattern of energy expenditure during simulated competition.
    Foster C, De Koning JJ, Hettinga F, Lampen J, La Clair KL, Dodge C, Bobbert M, Porcari JP.
    Med Sci Sports Exerc; 2003 May 01; 35(5):826-31. PubMed ID: 12750593
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.