These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 11039050

  • 41. A simple method for determining extracellular polysaccharide-producing ability of oral streptococci.
    Willcox DP, Drucker DB.
    Microbios; 1987; 51(208-209):175-81. PubMed ID: 3316938
    [Abstract] [Full Text] [Related]

  • 42. [An in vitro study on effect of Nidus vespae extract on the acid production of three strains of oral bacteria].
    Zuo YL, Li JY, Xie Q, Zhou XD.
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2005 May; 36(3):375-7. PubMed ID: 15931873
    [Abstract] [Full Text] [Related]

  • 43. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from maltose and soluble starch by overexpressing α-glucosidase.
    Yu L, Xu M, Tang IC, Yang ST.
    Appl Microbiol Biotechnol; 2015 Jul; 99(14):6155-65. PubMed ID: 26002632
    [Abstract] [Full Text] [Related]

  • 44. Purification and substrate specificity of honeybee, Apis mellifera L., alpha-glucosidase III.
    Nishimoto M, Kubota M, Tsuji M, Mori H, Kimura A, Matsui H, Chiba S.
    Biosci Biotechnol Biochem; 2001 Jul; 65(7):1610-6. PubMed ID: 11515546
    [Abstract] [Full Text] [Related]

  • 45. Production of saccharogenic and dextrinogenic amylases by Rhizomucor pusillus A 13.36.
    Silva TM, Attili-Angeli D, Carvalho AF, Da Silva R, Boscolo M, Gomes E.
    J Microbiol; 2005 Dec; 43(6):561-8. PubMed ID: 16410774
    [Abstract] [Full Text] [Related]

  • 46. The high maltose-producing alpha-amylase of the thermophilic actinomycete, Thermomonospora curvata.
    Collins BS, Kelly CT, Fogarty WM, Doyle EM.
    Appl Microbiol Biotechnol; 1993 Apr; 39(1):31-5. PubMed ID: 7763549
    [Abstract] [Full Text] [Related]

  • 47. Lactate dehydrogenase from Streptococcus mutans: purification, characterization, and crossed antigenicity with lactate dehydrogenases from Lactobacillus casei, Actinomyces viscosus, and Streptococcus sanguis.
    Sommer P, Klein JP, Schöller M, Frank RM.
    Infect Immun; 1985 Feb; 47(2):489-95. PubMed ID: 3917978
    [Abstract] [Full Text] [Related]

  • 48. Use of specifically labeled sucrose for comparison of extracellular glucan and fructan metabolism by oral streptococci.
    Schachtele CF, Loken AE, Schmitt MK.
    Infect Immun; 1972 Feb; 5(2):263-6. PubMed ID: 4564402
    [Abstract] [Full Text] [Related]

  • 49. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch.
    Cotta MA.
    Appl Environ Microbiol; 1992 Jan; 58(1):48-54. PubMed ID: 1539992
    [Abstract] [Full Text] [Related]

  • 50. Transglucosylation activities of multiple forms of alpha-glucosidase from spinach.
    Sugimoto M, Furui S, Sasaki K, Suzuki Y.
    Biosci Biotechnol Biochem; 2003 May; 67(5):1160-3. PubMed ID: 12834301
    [Abstract] [Full Text] [Related]

  • 51. A novel alpha-glucosidase from the moss Scopelophila cataractae.
    Yamasaki Y, Nakashima S, Konno H.
    Acta Biochim Pol; 2007 May; 54(2):401-6. PubMed ID: 17502927
    [Abstract] [Full Text] [Related]

  • 52. Screening of bacterial strains producing maltotetraose-forming amylase and the conditions for enzyme production.
    Yan Z, She X, Li M, Zhang S.
    Chin J Biotechnol; 1992 May; 8(3):211-8. PubMed ID: 1295602
    [Abstract] [Full Text] [Related]

  • 53. The malQ gene is essential for starch metabolism in Streptococcus mutans.
    Sato Y, Okamoto-Shibayama K, Azuma T.
    J Oral Microbiol; 2013 May; 5():. PubMed ID: 23930155
    [Abstract] [Full Text] [Related]

  • 54. Starch degradation by the mould Trichoderma viride. I. The mechanism of starch degradation.
    Schellart JA, Visser FM, Zandstra T, Middelhoven WJ.
    Antonie Van Leeuwenhoek; 1976 May; 42(3):229-38. PubMed ID: 10832
    [Abstract] [Full Text] [Related]

  • 55. New regulatory gene that contributes to control of Bacteroides thetaiotaomicron starch utilization genes.
    Cho KH, Cho D, Wang GR, Salyers AA.
    J Bacteriol; 2001 Dec; 183(24):7198-205. PubMed ID: 11717279
    [Abstract] [Full Text] [Related]

  • 56. The establishment of reproducible, complex communities of oral bacteria in the chemostat using defined inocula.
    McKee AS, McDermid AS, Ellwood DC, Marsh PD.
    J Appl Bacteriol; 1985 Sep; 59(3):263-75. PubMed ID: 3932293
    [Abstract] [Full Text] [Related]

  • 57. Effects of extracellular plaque components on the chlorhexidine sensitivity of strains of Streptococcus mutans and human dental plaque.
    Wolinsky LE, Hume WR.
    J Dent Res; 1985 Aug; 64(8):1051-4. PubMed ID: 3860535
    [Abstract] [Full Text] [Related]

  • 58. An investigation of the effects of maltose and sucrose in the diet on the microbiology of dental plaque in man.
    Skinner A, Woods A.
    Arch Oral Biol; 1984 Aug; 29(4):323-6. PubMed ID: 6586127
    [Abstract] [Full Text] [Related]

  • 59. Characterization of maltose and maltotriose transport in the acarbose-producing bacterium Actinoplanes sp.
    Brunkhorst C, Schneider E.
    Res Microbiol; 2005 Sep; 156(8):851-7. PubMed ID: 15939574
    [Abstract] [Full Text] [Related]

  • 60. Inhibition of Arabidopsis chloroplast β-amylase BAM3 by maltotriose suggests a mechanism for the control of transitory leaf starch mobilisation.
    Li J, Zhou W, Francisco P, Wong R, Zhang D, Smith SM.
    PLoS One; 2017 Sep; 12(2):e0172504. PubMed ID: 28225829
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.