These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


309 related items for PubMed ID: 11042550

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction.
    Zhao Y, Ren N, Wang A.
    Chemosphere; 2008 May; 72(2):233-42. PubMed ID: 18331751
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Microbial sulfate reduction in a liquid-solid fluidized bed reactor.
    Nagpal S, Chuichulcherm S, Peeva L, Livingston A.
    Biotechnol Bioeng; 2000 Nov 20; 70(4):370-80. PubMed ID: 11005919
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor.
    Jong T, Parry DL.
    Water Res; 2006 Jul 20; 40(13):2561-71. PubMed ID: 16814360
    [Abstract] [Full Text] [Related]

  • 11. Sulfidogenic fluidized-bed treatment of metal-containing wastewater at 8 and 65 degrees C temperatures is limited by acetate oxidation.
    Sahinkaya E, Ozkaya B, Kaksonen AH, Puhakka JA.
    Water Res; 2007 Jun 20; 41(12):2706-14. PubMed ID: 17418880
    [Abstract] [Full Text] [Related]

  • 12. Quantification of toxic and inhibitory impact of copper and zinc on mixed cultures of sulfate-reducing bacteria.
    Utgikar VP, Tabak HH, Haines JR, Govind R.
    Biotechnol Bioeng; 2003 May 05; 82(3):306-12. PubMed ID: 12599257
    [Abstract] [Full Text] [Related]

  • 13. Isolation of highly performant sulfate reducers from sulfate-rich environments.
    Hiligsmann S, Jacques P, Thonart P.
    Biodegradation; 1998 May 05; 9(3-4):285-92. PubMed ID: 10022071
    [Abstract] [Full Text] [Related]

  • 14. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria.
    Wang A, Ren N, Wang X, Lee D.
    J Hazard Mater; 2008 Jun 15; 154(1-3):1060-5. PubMed ID: 18093734
    [Abstract] [Full Text] [Related]

  • 15. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.
    Stams AJ, Plugge CM, de Bok FA, van Houten BH, Lens P, Dijkman H, Weijma J.
    Water Sci Technol; 2005 Jun 15; 52(1-2):13-20. PubMed ID: 16187442
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Growth of desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria.
    Bryant MP, Campbell LL, Reddy CA, Crabill MR.
    Appl Environ Microbiol; 1977 May 15; 33(5):1162-9. PubMed ID: 879775
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.