These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


223 related items for PubMed ID: 11048954

  • 1. Site-directed mutagenesis of squalene-hopene cyclase: altered substrate specificity and product distribution.
    Dang T, Prestwich GD.
    Chem Biol; 2000 Aug; 7(8):643-9. PubMed ID: 11048954
    [Abstract] [Full Text] [Related]

  • 2. Deletion of the Gly600 residue of Alicyclobacillus acidocaldarius squalene cyclase alters the substrate specificity into that of the eukaryotic-type cyclase specific to (3S)-2,3-oxidosqualene.
    Hoshino T, Shimizu K, Sato T.
    Angew Chem Int Ed Engl; 2004 Dec 10; 43(48):6700-3. PubMed ID: 15593147
    [No Abstract] [Full Text] [Related]

  • 3. Alicyclobacillus acidocaldarius Squalene-Hopene Cyclase: The Critical Role of Steric Bulk at Ala306 and the First Enzymatic Synthesis of Epoxydammarane from 2,3-Oxidosqualene.
    Ideno N, Umeyama S, Watanabe T, Nakajima M, Sato T, Hoshino T.
    Chembiochem; 2018 Sep 04; 19(17):1873-1886. PubMed ID: 29911308
    [Abstract] [Full Text] [Related]

  • 4. Site-directed mutagenesis experiments on the putative deprotonation site of squalene-hopene cyclase from Alicyclobacillus acidocaldarius.
    Sato T, Kouda M, Hoshino T.
    Biosci Biotechnol Biochem; 2004 Mar 04; 68(3):728-38. PubMed ID: 15056909
    [Abstract] [Full Text] [Related]

  • 5. Squalene-hopene cyclase: final deprotonation reaction, conformational analysis for the cyclization of (3R,S)-2,3-oxidosqualene and further evidence for the requirement of an isopropylidene moiety both for initiation of the polycyclization cascade and for the formation of the 5-membered E-ring.
    Hoshino T, Nakano S, Kondo T, Sato T, Miyoshi A.
    Org Biomol Chem; 2004 May 21; 2(10):1456-70. PubMed ID: 15136801
    [Abstract] [Full Text] [Related]

  • 6. Crystal structure of a squalene cyclase in complex with the potential anticholesteremic drug Ro48-8071.
    Lenhart A, Weihofen WA, Pleschke AE, Schulz GE.
    Chem Biol; 2002 May 21; 9(5):639-45. PubMed ID: 12031670
    [Abstract] [Full Text] [Related]

  • 7. Bicyclic triterpenes as new main products of squalene-hopene cyclase by mutation at conserved tyrosine residues.
    Füll C.
    FEBS Lett; 2001 Dec 14; 509(3):361-4. PubMed ID: 11749956
    [Abstract] [Full Text] [Related]

  • 8. Rationally designed inhibitors as tools for comparing the mechanism of squalene-hopene cyclase with oxidosqualene cyclase.
    Viola F, Ceruti M, Cattel L, Milla P, Poralla K, Balliano G.
    Lipids; 2000 Mar 14; 35(3):297-303. PubMed ID: 10783007
    [Abstract] [Full Text] [Related]

  • 9. Squalene-hopene cyclase (Spterp25) from Streptomyces peucetius: sequence analysis, expression and functional characterization.
    Ghimire GP, Oh TJ, Lee HC, Sohng JK.
    Biotechnol Lett; 2009 Apr 14; 31(4):565-9. PubMed ID: 19116691
    [Abstract] [Full Text] [Related]

  • 10. Profound insights into squalene cyclization.
    Poralla K.
    Chem Biol; 2004 Jan 14; 11(1):12-4. PubMed ID: 15112988
    [Abstract] [Full Text] [Related]

  • 11. Squalene hopene cyclases are protonases for stereoselective Brønsted acid catalysis.
    Hammer SC, Marjanovic A, Dominicus JM, Nestl BM, Hauer B.
    Nat Chem Biol; 2015 Feb 14; 11(2):121-6. PubMed ID: 25503928
    [Abstract] [Full Text] [Related]

  • 12. Site-directed mutagenesis of putative active-site residues in squalene-hopene cyclase.
    Feil C, Süssmuth R, Jung G, Poralla K.
    Eur J Biochem; 1996 Nov 15; 242(1):51-5. PubMed ID: 8954152
    [Abstract] [Full Text] [Related]

  • 13. The binding site for an inhibitor of squalene:hopene cyclase determined using photoaffinity labeling and molecular modeling.
    Dang T, Abe I, Zheng YF, Prestwich GD.
    Chem Biol; 1999 Jun 15; 6(6):333-41. PubMed ID: 10375539
    [Abstract] [Full Text] [Related]

  • 14. Reviewing the polyolefin cyclization reaction of the c(35) polyprene catalyzed by squalene-hopene cyclase.
    Hoshino T, Kumai Y, Sato T.
    Chemistry; 2009 Jun 15; 15(9):2091-100. PubMed ID: 19142932
    [Abstract] [Full Text] [Related]

  • 15. Squalene-hopene cyclases.
    Siedenburg G, Jendrossek D.
    Appl Environ Microbiol; 2011 Jun 15; 77(12):3905-15. PubMed ID: 21531832
    [Abstract] [Full Text] [Related]

  • 16. Mechanistic insights into oxidosqualene cyclizations through homology modeling.
    Schulz-Gasch T, Stahl M.
    J Comput Chem; 2003 Apr 30; 24(6):741-53. PubMed ID: 12666166
    [Abstract] [Full Text] [Related]

  • 17. Purification, kinetics, inhibitors and CD for recombinant β-amyrin synthase from Euphorbia tirucalli L and functional analysis of the DCTA motif, which is highly conserved among oxidosqualene cyclases.
    Ito R, Masukawa Y, Hoshino T.
    FEBS J; 2013 Mar 30; 280(5):1267-80. PubMed ID: 23294602
    [Abstract] [Full Text] [Related]

  • 18. Concerted nature of AB ring formation in the enzymatic cyclization of squalene to hopenes.
    Hess BA, Smentek L.
    Org Lett; 2004 May 27; 6(11):1717-20. PubMed ID: 15151397
    [Abstract] [Full Text] [Related]

  • 19. Arabidopsis thaliana LUP1 converts oxidosqualene to multiple triterpene alcohols and a triterpene diol.
    Segura MJ, Meyer MM, Matsuda SP.
    Org Lett; 2000 Jul 27; 2(15):2257-9. PubMed ID: 10930257
    [Abstract] [Full Text] [Related]

  • 20. New cyclization mechanism for squalene: a ring-expansion step for the five-membered C-ring intermediate in hopene biosynthesis.
    Hoshino T, Kouda M, Abe T, Ohashi S.
    Biosci Biotechnol Biochem; 1999 Nov 27; 63(11):2038-41. PubMed ID: 10635573
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.