These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
198 related items for PubMed ID: 11069833
1. Cystic fibrosis sputum: a barrier to the transport of nanospheres. Sanders NN, De Smedt SC, Van Rompaey E, Simoens P, De Baets F, Demeester J. Am J Respir Crit Care Med; 2000 Nov; 162(5):1905-11. PubMed ID: 11069833 [Abstract] [Full Text] [Related]
2. Actin limits enhancement of nanoparticle diffusion through cystic fibrosis sputum by mucolytics. Broughton-Head VJ, Smith JR, Shur J, Shute JK. Pulm Pharmacol Ther; 2007 Nov; 20(6):708-17. PubMed ID: 17055310 [Abstract] [Full Text] [Related]
3. Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. Dawson M, Wirtz D, Hanes J. J Biol Chem; 2003 Dec 12; 278(50):50393-401. PubMed ID: 13679362 [Abstract] [Full Text] [Related]
8. Improved clearability of cystic fibrosis sputum with dextran treatment in vitro. Feng W, Garrett H, Speert DP, King M. Am J Respir Crit Care Med; 1998 Mar 12; 157(3 Pt 1):710-4. PubMed ID: 9517580 [Abstract] [Full Text] [Related]
12. Unfractionated heparin reduces the elasticity of sputum from patients with cystic fibrosis. Broughton-Head VJ, Shur J, Carroll MP, Smith JR, Shute JK. Am J Physiol Lung Cell Mol Physiol; 2007 Nov 12; 293(5):L1240-9. PubMed ID: 17827252 [Abstract] [Full Text] [Related]
13. Rheological effects of hypertonic saline and sodium bicarbonate solutions on cystic fibrosis sputum in vitro. Budai-Szűcs M, Berkó S, Kovács A, Jaikumpun P, Ambrus R, Halász A, Szabó-Révész P, Csányi E, Zsembery Á. BMC Pulm Med; 2021 Jul 12; 21(1):225. PubMed ID: 34253193 [Abstract] [Full Text] [Related]
14. Drug diffusion through cystic fibrotic mucus: steady-state permeation, rheologic properties, and glycoprotein morphology. Bhat PG, Flanagan DR, Donovan MD. J Pharm Sci; 1996 Jun 12; 85(6):624-30. PubMed ID: 8773960 [Abstract] [Full Text] [Related]
15. Impact of PEGylation on the mucolytic activity of recombinant human deoxyribonuclease I in cystic fibrosis sputum. Guichard MJ, Kinoo D, Aubriot AS, Bauwens N, Gougué J, Vermeulen F, Lebecque P, Leal T, Vanbever R. Clin Sci (Lond); 2018 Jul 18; 132(13):1439-1452. PubMed ID: 29871879 [Abstract] [Full Text] [Related]
16. Mucus structure and properties in cystic fibrosis. Rubin BK. Paediatr Respir Rev; 2007 Mar 18; 8(1):4-7. PubMed ID: 17419972 [Abstract] [Full Text] [Related]
17. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Shak S, Capon DJ, Hellmiss R, Marsters SA, Baker CL. Proc Natl Acad Sci U S A; 1990 Dec 18; 87(23):9188-92. PubMed ID: 2251263 [Abstract] [Full Text] [Related]
18. DNA and actin bind and inhibit interleukin-8 function in cystic fibrosis sputa: in vitro effects of mucolytics. Perks B, Shute JK. Am J Respir Crit Care Med; 2000 Nov 18; 162(5):1767-72. PubMed ID: 11069810 [Abstract] [Full Text] [Related]
19. Structural alterations of gene complexes by cystic fibrosis sputum. Sanders NN, Van Rompaey E, De Smedt SC, Demeester J. Am J Respir Crit Care Med; 2001 Aug 01; 164(3):486-93. PubMed ID: 11500355 [Abstract] [Full Text] [Related]
20. Mobility and stability of gene complexes in biogels. Sanders NN, De Smedt SC, Demeester J. J Control Release; 2003 Feb 21; 87(1-3):117-29. PubMed ID: 12618028 [Abstract] [Full Text] [Related] Page: [Next] [New Search]