These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


249 related items for PubMed ID: 11069958

  • 21. Local organization of spatial frequency tuning dynamics in the cat visual areas 17 and 18.
    Tanaka H, Ohzawa I.
    J Neurophysiol; 2020 Jul 01; 124(1):178-191. PubMed ID: 32519574
    [Abstract] [Full Text] [Related]

  • 22. The layout of iso-orientation domains in area 18 of cat visual cortex: optical imaging reveals a pinwheel-like organization.
    Bonhoeffer T, Grinvald A.
    J Neurosci; 1993 Oct 01; 13(10):4157-80. PubMed ID: 8410182
    [Abstract] [Full Text] [Related]

  • 23. Optical imaging of the layout of functional domains in area 17 and across the area 17/18 border in cat visual cortex.
    Bonhoeffer T, Kim DS, Malonek D, Shoham D, Grinvald A.
    Eur J Neurosci; 1995 Sep 01; 7(9):1973-88. PubMed ID: 8528473
    [Abstract] [Full Text] [Related]

  • 24. Influence of experience on orientation maps in cat visual cortex.
    Sengpiel F, Stawinski P, Bonhoeffer T.
    Nat Neurosci; 1999 Aug 01; 2(8):727-32. PubMed ID: 10412062
    [Abstract] [Full Text] [Related]

  • 25. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns.
    Bonhoeffer T, Grinvald A.
    Nature; 1991 Oct 03; 353(6343):429-31. PubMed ID: 1896085
    [Abstract] [Full Text] [Related]

  • 26. The role of early visual experience in the development of spatial-frequency preference in the primary visual cortex.
    Nishio N, Hayashi K, Ishikawa AW, Yoshimura Y.
    J Physiol; 2021 Sep 03; 599(17):4131-4152. PubMed ID: 34275157
    [Abstract] [Full Text] [Related]

  • 27. Sparseness of coding in area 17 of the cat visual cortex: a comparison between pinwheel centres and orientation domains.
    Jayakumar J, Hu D, Vidyasagar TR.
    Neuroscience; 2012 Dec 06; 225():55-64. PubMed ID: 22963796
    [Abstract] [Full Text] [Related]

  • 28. Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex.
    Crowder NA, Price NS, Hietanen MA, Dreher B, Clifford CW, Ibbotson MR.
    J Neurophysiol; 2006 Jan 06; 95(1):271-83. PubMed ID: 16192327
    [Abstract] [Full Text] [Related]

  • 29. Optically imaged maps of orientation preference in primary visual cortex of cats and ferrets.
    Rao SC, Toth LJ, Sur M.
    J Comp Neurol; 1997 Oct 27; 387(3):358-70. PubMed ID: 9335420
    [Abstract] [Full Text] [Related]

  • 30. Orientation selectivity without orientation maps in visual cortex of a highly visual mammal.
    Van Hooser SD, Heimel JA, Chung S, Nelson SB, Toth LJ.
    J Neurosci; 2005 Jan 05; 25(1):19-28. PubMed ID: 15634763
    [Abstract] [Full Text] [Related]

  • 31. Parallel development of orientation maps and spatial frequency selectivity in cat visual cortex.
    Tani T, Ribot J, O'Hashi K, Tanaka S.
    Eur J Neurosci; 2012 Jan 05; 35(1):44-55. PubMed ID: 22211742
    [Abstract] [Full Text] [Related]

  • 32. Correlation of local and global orientation and spatial frequency tuning in macaque V1.
    Xing D, Ringach DL, Shapley R, Hawken MJ.
    J Physiol; 2004 Jun 15; 557(Pt 3):923-33. PubMed ID: 15090603
    [Abstract] [Full Text] [Related]

  • 33. Critical spatial frequencies for illusory contour processing in early visual cortex.
    Zhan CA, Baker CL.
    Cereb Cortex; 2008 May 15; 18(5):1029-41. PubMed ID: 17693395
    [Abstract] [Full Text] [Related]

  • 34. Contrast and response gain control depend on cortical map architecture.
    Hietanen MA, Cloherty SL, Ibbotson MR.
    Eur J Neurosci; 2015 Dec 15; 42(11):2963-73. PubMed ID: 26432621
    [Abstract] [Full Text] [Related]

  • 35. A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn.
    Bressloff PC, Cowan JD.
    Philos Trans R Soc Lond B Biol Sci; 2003 Oct 29; 358(1438):1643-67. PubMed ID: 14561324
    [Abstract] [Full Text] [Related]

  • 36. Laminar, columnar and topographic aspects of ocular dominance in the primary visual cortex of Cebus monkeys.
    Rosa MG, Gattass R, Fiorani M, Soares JG.
    Exp Brain Res; 1992 Oct 29; 88(2):249-64. PubMed ID: 1577100
    [Abstract] [Full Text] [Related]

  • 37. Scale-Invariant Visual Capabilities Explained by Topographic Representations of Luminance and Texture in Primate V1.
    Benvenuti G, Chen Y, Ramakrishnan C, Deisseroth K, Geisler WS, Seidemann E.
    Neuron; 2018 Dec 19; 100(6):1504-1512.e4. PubMed ID: 30392796
    [Abstract] [Full Text] [Related]

  • 38. Processing deficits in primary visual cortex of amblyopic cats.
    Schmidt KE, Singer W, Galuske RA.
    J Neurophysiol; 2004 Apr 19; 91(4):1661-71. PubMed ID: 14668297
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Spatial frequency characteristics of nearby neurons in cats' visual cortex.
    Molotchnikoff S, Gillet PC, Shumikhina S, Bouchard M.
    Neurosci Lett; 2007 May 18; 418(3):242-7. PubMed ID: 17400381
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.