These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


129 related items for PubMed ID: 1107332

  • 1. Escherichia coli glyoxalate carboligase. Properties and reconstitution with 5-deazaFAD and 1,5-dihydrodeazaFADH2.
    Cromartie TH, Walsh CT.
    J Biol Chem; 1976 Jan 25; 251(2):329-33. PubMed ID: 1107332
    [Abstract] [Full Text] [Related]

  • 2. Effect of flavin structure and redox state on catalysis by and flavin-pterin energy transfer in Escherichia coli DNA photolyase.
    Chanderkar LP, Jorns MS.
    Biochemistry; 1991 Jan 22; 30(3):745-54. PubMed ID: 1988061
    [Abstract] [Full Text] [Related]

  • 3. Stability and reconstitution of pyruvate oxidase from Lactobacillus plantarum: dissection of the stabilizing effects of coenzyme binding and subunit interaction.
    Risse B, Stempfer G, Rudolph R, Möllering H, Jaenicke R.
    Protein Sci; 1992 Dec 22; 1(12):1699-709. PubMed ID: 1304899
    [Abstract] [Full Text] [Related]

  • 4. Reconstitution of Escherichia coli photolyase with flavins and flavin analogues.
    Payne G, Wills M, Walsh C, Sancar A.
    Biochemistry; 1990 Jun 19; 29(24):5706-11. PubMed ID: 2200512
    [Abstract] [Full Text] [Related]

  • 5. Reconstitution of Escherichia coli thioredoxin reductase with 1-deazaFAD. Evidence for 1-deazaFAD C-4a adduct formation linked to the ionization of an active site base.
    O'Donnell ME, Williams CH.
    J Biol Chem; 1984 Feb 25; 259(4):2243-51. PubMed ID: 6365906
    [Abstract] [Full Text] [Related]

  • 6. Reconstitution of native Escherichia coli pyruvate oxidase from apoenzyme monomers and FAD.
    Recny MA, Hager LP.
    J Biol Chem; 1982 Nov 10; 257(21):12878-86. PubMed ID: 6752142
    [Abstract] [Full Text] [Related]

  • 7. Biosynthesis of covalently bound flavin: isolation and in vitro flavinylation of the monomeric sarcosine oxidase apoprotein.
    Hassan-Abdallah A, Bruckner RC, Zhao G, Jorns MS.
    Biochemistry; 2005 May 03; 44(17):6452-62. PubMed ID: 15850379
    [Abstract] [Full Text] [Related]

  • 8. Use of 5-deazaFAD to study hydrogen transfer in the D-amino acid oxidase reaction.
    Hersh LB, Jorns MS.
    J Biol Chem; 1975 Nov 25; 250(22):8728-34. PubMed ID: 390
    [Abstract] [Full Text] [Related]

  • 9. Preparation and characterization of a 5'-deazaFAD T491V NADPH-cytochrome P450 reductase.
    Zhang H, Gruenke L, Saribas AS, Im SC, Shen AL, Kasper CB, Waskell L.
    Biochemistry; 2003 Jun 10; 42(22):6804-13. PubMed ID: 12779335
    [Abstract] [Full Text] [Related]

  • 10. Studies of the flavin adenine dinucleotide binding region in Escherichia coli pyruvate oxidase.
    Mather M, Schopfer LM, Massey V, Gennis RB.
    J Biol Chem; 1982 Nov 10; 257(21):12887-92. PubMed ID: 6752143
    [Abstract] [Full Text] [Related]

  • 11. Chromophore function and interaction in Escherichia coli DNA photolyase: reconstitution of the apoenzyme with pterin and/or flavin derivatives.
    Jorns MS, Wang BY, Jordan SP, Chanderkar LP.
    Biochemistry; 1990 Jan 16; 29(2):552-61. PubMed ID: 2405908
    [Abstract] [Full Text] [Related]

  • 12. Modulation of arginine decarboxylase activity from Mycobacterium smegmatis. Evidence for pyridoxal-5'-phosphate-mediated conformational changes in the enzyme.
    Balasundaram D, Tyagi AK.
    Eur J Biochem; 1989 Aug 01; 183(2):339-45. PubMed ID: 2667997
    [Abstract] [Full Text] [Related]

  • 13. Reconstitution of UDP-galactopyranose mutase with 1-deaza-FAD and 5-deaza-FAD: analysis and mechanistic implications.
    Huang Z, Zhang Q, Liu HW.
    Bioorg Chem; 2003 Dec 01; 31(6):494-502. PubMed ID: 14613770
    [Abstract] [Full Text] [Related]

  • 14. Affinity probing of flavin binding sites. 2. Identification of a reactive cysteine in the flavin domain of Escherichia coli DNA photolyase.
    Raibekas AA, Jorns MS.
    Biochemistry; 1994 Oct 25; 33(42):12656-64. PubMed ID: 7918492
    [Abstract] [Full Text] [Related]

  • 15. Biodegradative ornithine decarboxylase of Escherichia coli. Purification, properties, and pyridoxal 5'-phosphate binding site.
    Applebaum D, Sabo DL, Fischer EH, Morris DR.
    Biochemistry; 1975 Aug 12; 14(16):3675-81. PubMed ID: 240388
    [Abstract] [Full Text] [Related]

  • 16. [Effects of pyridoxal-phosphate and its 4'- and 5'-substituted analogs on macromolecular structure of Escherichia coli glutamate decarboxylase].
    Kulikova AI, Sukhareva BS, L'vova SD, Stepanova SV, Gunar VI.
    Mol Biol (Mosk); 1982 Aug 12; 16(3):585-92. PubMed ID: 7048067
    [Abstract] [Full Text] [Related]

  • 17. Kinetics of the decamer - dimer dissociation of arginine decarboxylase.
    Boeker EA.
    Biochem Biophys Res Commun; 1977 Mar 07; 75(1):179-85. PubMed ID: 15561
    [No Abstract] [Full Text] [Related]

  • 18. Evidence for direct interaction between cysteine 138 and the flavin in thioredoxin reductase. A study using flavin analogs.
    Prongay AJ, Williams CH.
    J Biol Chem; 1990 Nov 05; 265(31):18968-75. PubMed ID: 2229055
    [Abstract] [Full Text] [Related]

  • 19. The purification and properties of cyclohexanone oxygenase from Nocardia globerula CL1 and Acinetobacter NCIB 9871.
    Donoghue NA, Norris DB, Trudgill PW.
    Eur J Biochem; 1976 Mar 16; 63(1):175-92. PubMed ID: 1261545
    [Abstract] [Full Text] [Related]

  • 20. Flavin redox state triggers conformational changes in the PutA protein from Escherichia coli.
    Zhu W, Becker DF.
    Biochemistry; 2003 May 13; 42(18):5469-77. PubMed ID: 12731889
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.