These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


163 related items for PubMed ID: 11076527

  • 1. Spectroscopic detection of transient thiamin diphosphate-bound intermediates on benzoylformate decarboxylase.
    Sergienko EA, Wang J, Polovnikova L, Hasson MS, McLeish MJ, Kenyon GL, Jordan F.
    Biochemistry; 2000 Nov 14; 39(45):13862-9. PubMed ID: 11076527
    [Abstract] [Full Text] [Related]

  • 2. Detection and time course of formation of major thiamin diphosphate-bound covalent intermediates derived from a chromophoric substrate analogue on benzoylformate decarboxylase.
    Chakraborty S, Nemeria NS, Balakrishnan A, Brandt GS, Kneen MM, Yep A, McLeish MJ, Kenyon GL, Petsko GA, Ringe D, Jordan F.
    Biochemistry; 2009 Feb 10; 48(5):981-94. PubMed ID: 19140682
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates.
    Schütz A, Golbik R, König S, Hübner G, Tittmann K.
    Biochemistry; 2005 Apr 26; 44(16):6164-79. PubMed ID: 15835904
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Structural and kinetic studies on native intermediates and an intermediate analogue in benzoylformate decarboxylase reveal a least motion mechanism with an unprecedented short-lived predecarboxylation intermediate.
    Bruning M, Berheide M, Meyer D, Golbik R, Bartunik H, Liese A, Tittmann K.
    Biochemistry; 2009 Apr 21; 48(15):3258-68. PubMed ID: 19182954
    [Abstract] [Full Text] [Related]

  • 7. Mechanism of benzaldehyde lyase studied via thiamin diphosphate-bound intermediates and kinetic isotope effects.
    Chakraborty S, Nemeria N, Yep A, McLeish MJ, Kenyon GL, Jordan F.
    Biochemistry; 2008 Mar 25; 47(12):3800-9. PubMed ID: 18314961
    [Abstract] [Full Text] [Related]

  • 8. Reactivity of intermediates in benzoylformate decarboxylase: avoiding the path to destruction.
    Hu Q, Kluger R.
    J Am Chem Soc; 2002 Dec 18; 124(50):14858-9. PubMed ID: 12475322
    [Abstract] [Full Text] [Related]

  • 9. Tetrahedral intermediates in thiamin diphosphate-dependent decarboxylations exist as a 1',4'-imino tautomeric form of the coenzyme, unlike the michaelis complex or the free coenzyme.
    Nemeria N, Baykal A, Joseph E, Zhang S, Yan Y, Furey W, Jordan F.
    Biochemistry; 2004 Jun 01; 43(21):6565-75. PubMed ID: 15157089
    [Abstract] [Full Text] [Related]

  • 10. Accelerating unimolecular decarboxylation by preassociated acid catalysis in thiamin-derived intermediates: implicating Brønsted acids as carbanion traps in enzymes.
    Kluger R, Ikeda G, Hu Q, Cao P, Drewry J.
    J Am Chem Soc; 2006 Dec 13; 128(49):15856-64. PubMed ID: 17147398
    [Abstract] [Full Text] [Related]

  • 11. The crystal structure of benzoylformate decarboxylase at 1.6 A resolution: diversity of catalytic residues in thiamin diphosphate-dependent enzymes.
    Hasson MS, Muscate A, McLeish MJ, Polovnikova LS, Gerlt JA, Kenyon GL, Petsko GA, Ringe D.
    Biochemistry; 1998 Jul 14; 37(28):9918-30. PubMed ID: 9665697
    [Abstract] [Full Text] [Related]

  • 12. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K, Wille G, Golbik R, Weidner A, Ghisla S, Hübner G.
    Biochemistry; 2005 Oct 11; 44(40):13291-303. PubMed ID: 16201755
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Factors mediating activity, selectivity, and substrate specificity for the thiamin diphosphate-dependent enzymes benzaldehyde lyase and benzoylformate decarboxylase.
    Knoll M, Müller M, Pleiss J, Pohl M.
    Chembiochem; 2006 Dec 11; 7(12):1928-34. PubMed ID: 17051662
    [Abstract] [Full Text] [Related]

  • 17. Dual catalytic apparatus of the thiamin diphosphate coenzyme: acid-base via the 1',4'-iminopyrimidine tautomer along with its electrophilic role.
    Jordan F, Nemeria NS, Zhang S, Yan Y, Arjunan P, Furey W.
    J Am Chem Soc; 2003 Oct 22; 125(42):12732-8. PubMed ID: 14558820
    [Abstract] [Full Text] [Related]

  • 18. Kinetics and mechanism of benzoylformate decarboxylase using 13C and solvent deuterium isotope effects on benzoylformate and benzoylformate analogues.
    Weiss PM, Garcia GA, Kenyon GL, Cleland WW, Cook PF.
    Biochemistry; 1988 Mar 22; 27(6):2197-205. PubMed ID: 3378056
    [Abstract] [Full Text] [Related]

  • 19. Snapshot of a reaction intermediate: analysis of benzoylformate decarboxylase in complex with a benzoylphosphonate inhibitor.
    Brandt GS, Kneen MM, Chakraborty S, Baykal AT, Nemeria N, Yep A, Ruby DI, Petsko GA, Kenyon GL, McLeish MJ, Jordan F, Ringe D.
    Biochemistry; 2009 Apr 21; 48(15):3247-57. PubMed ID: 19320438
    [Abstract] [Full Text] [Related]

  • 20. A bulky hydrophobic residue is not required to maintain the V-conformation of enzyme-bound thiamin diphosphate.
    Andrews FH, Tom AR, Gunderman PR, Novak WR, McLeish MJ.
    Biochemistry; 2013 May 07; 52(18):3028-30. PubMed ID: 23607689
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.