These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 11082700

  • 1. [Natural organic compounds that affect to microtubule functions: syntheses and structure-activity relationships of combretastatins, curacin A and their analogs as the colchicine-site ligands on tubulin].
    Iwasaki S, Shirai R.
    Yakugaku Zasshi; 2000 Oct; 120(10):875-89. PubMed ID: 11082700
    [Abstract] [Full Text] [Related]

  • 2. Natural organic compounds that affect to microtubule functions.
    Iwasaki S.
    Yakugaku Zasshi; 1998 Apr; 118(4):112-26. PubMed ID: 9564789
    [Abstract] [Full Text] [Related]

  • 3. Characterization of the interaction of the marine cyanobacterial natural product curacin A with the colchicine site of tubulin and initial structure-activity studies with analogues.
    Blokhin AV, Yoo HD, Geralds RS, Nagle DG, Gerwick WH, Hamel E.
    Mol Pharmacol; 1995 Sep; 48(3):523-31. PubMed ID: 7565634
    [Abstract] [Full Text] [Related]

  • 4. Structure-activity analysis of the interaction of curacin A, the potent colchicine site antimitotic agent, with tubulin and effects of analogs on the growth of MCF-7 breast cancer cells.
    Verdier-Pinard P, Lai JY, Yoo HD, Yu J, Marquez B, Nagle DG, Nambu M, White JD, Falck JR, Gerwick WH, Day BW, Hamel E.
    Mol Pharmacol; 1998 Jan; 53(1):62-76. PubMed ID: 9443933
    [Abstract] [Full Text] [Related]

  • 5. Antimitotic natural products combretastatin A-4 and combretastatin A-2: studies on the mechanism of their inhibition of the binding of colchicine to tubulin.
    Lin CM, Ho HH, Pettit GR, Hamel E.
    Biochemistry; 1989 Aug 22; 28(17):6984-91. PubMed ID: 2819042
    [Abstract] [Full Text] [Related]

  • 6. Interactions of tubulin with potent natural and synthetic analogs of the antimitotic agent combretastatin: a structure-activity study.
    Lin CM, Singh SB, Chu PS, Dempcy RO, Schmidt JM, Pettit GR, Hamel E.
    Mol Pharmacol; 1988 Aug 22; 34(2):200-8. PubMed ID: 3412321
    [Abstract] [Full Text] [Related]

  • 7. Development of combretastatins as potent tubulin polymerization inhibitors.
    Bukhari SNA, Kumar GB, Revankar HM, Qin HL.
    Bioorg Chem; 2017 Jun 22; 72():130-147. PubMed ID: 28460355
    [Abstract] [Full Text] [Related]

  • 8. Podophyllotoxin, steganacin and combretastatin: natural products that bind at the colchicine site of tubulin.
    Sackett DL.
    Pharmacol Ther; 1993 Aug 22; 59(2):163-228. PubMed ID: 8278462
    [Abstract] [Full Text] [Related]

  • 9. Chemistry and biology of curacin A.
    Wipf P, Reeves JT, Day BW.
    Curr Pharm Des; 2004 Aug 22; 10(12):1417-37. PubMed ID: 15134491
    [Abstract] [Full Text] [Related]

  • 10. Isolation, structure, and synthesis of combretastatins A-1 and B-1, potent new inhibitors of microtubule assembly, derived from Combretum caffrum.
    Pettit GR, Singh SB, Niven ML, Hamel E, Schmidt JM.
    J Nat Prod; 1987 Aug 22; 50(1):119-31. PubMed ID: 3598594
    [Abstract] [Full Text] [Related]

  • 11. Isolation, structure, synthesis, and antimitotic properties of combretastatins B-3 and B-4 from Combretum caffrum.
    Pettit GR, Singh SB, Schmidt JM, Niven ML, Hamel E, Lin CM.
    J Nat Prod; 1988 Aug 22; 51(3):517-27. PubMed ID: 3404149
    [Abstract] [Full Text] [Related]

  • 12. Evaluation of the cytotoxic mechanism mediated by baccatin III, the synthetic precursor of taxol.
    Pengsuparp T, Kingston DG, Neidigh KA, Cordell GA, Pezzuto JM.
    Chem Biol Interact; 1996 Aug 14; 101(2):103-14. PubMed ID: 8760392
    [Abstract] [Full Text] [Related]

  • 13. The interaction of the B-ring of colchicine with alpha-tubulin: a novel footprinting approach.
    Chaudhuri AR, Seetharamalu P, Schwarz PM, Hausheer FH, Ludueña RF.
    J Mol Biol; 2000 Nov 10; 303(5):679-92. PubMed ID: 11061968
    [Abstract] [Full Text] [Related]

  • 14. Discovery, synthesis, activities, structure-activity relationships, and clinical development of combretastatins and analogs as anticancer drugs. A comprehensive review.
    Singh SB.
    Nat Prod Rep; 2024 Feb 21; 41(2):298-322. PubMed ID: 38009216
    [Abstract] [Full Text] [Related]

  • 15. Combretastatin-like chalcones as inhibitors of microtubule polymerisation. Part 2: Structure-based discovery of alpha-aryl chalcones.
    Ducki S, Mackenzie G, Greedy B, Armitage S, Chabert JF, Bennett E, Nettles J, Snyder JP, Lawrence NJ.
    Bioorg Med Chem; 2009 Nov 15; 17(22):7711-22. PubMed ID: 19837594
    [Abstract] [Full Text] [Related]

  • 16. Synthesis and antimicrotubule activity of combretatropone derivatives.
    Janik ME, Bane SL.
    Bioorg Med Chem; 2002 Jun 15; 10(6):1895-903. PubMed ID: 11937347
    [Abstract] [Full Text] [Related]

  • 17. Biosynthesis of radiolabeled curacin A and its rapid and apparently irreversible binding to the colchicine site of tubulin.
    Verdier-Pinard P, Sitachitta N, Rossi JV, Sackett DL, Gerwick WH, Hamel E.
    Arch Biochem Biophys; 1999 Oct 01; 370(1):51-8. PubMed ID: 10496976
    [Abstract] [Full Text] [Related]

  • 18. A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach.
    Nguyen TL, McGrath C, Hermone AR, Burnett JC, Zaharevitz DW, Day BW, Wipf P, Hamel E, Gussio R.
    J Med Chem; 2005 Sep 22; 48(19):6107-16. PubMed ID: 16162011
    [Abstract] [Full Text] [Related]

  • 19. Microtubulin binding sites as target for developing anticancer agents.
    Islam MN, Iskander MN.
    Mini Rev Med Chem; 2004 Dec 22; 4(10):1077-104. PubMed ID: 15579115
    [Abstract] [Full Text] [Related]

  • 20. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains.
    Naaz F, Haider MR, Shafi S, Yar MS.
    Eur J Med Chem; 2019 Jun 01; 171():310-331. PubMed ID: 30953881
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.