These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
102 related items for PubMed ID: 11084601
1. Characteristics and glycerol metabolism of fumarate-reducing Enterococcus faecalis RKY1. Ryu HW, Kang KH, Pan JG, Chang HN. Biotechnol Bioeng; 2001 Jan 05; 72(1):119-24. PubMed ID: 11084601 [Abstract] [Full Text] [Related]
2. FUMARATE REDUCTION AND ITS ROLE IN THE DIVERSION OF GLUCOSE FERMENTATION BY STREPTOCOCCUS FAECALIS. DEIBEL RH, KVETKAS MJ. J Bacteriol; 1964 Oct 05; 88(4):858-64. PubMed ID: 14219047 [Abstract] [Full Text] [Related]
3. Pyruvate formate-lyase is essential for fumarate-independent anaerobic glycerol utilization in the Enterococcus faecalis strain W11. Doi Y, Ikegami Y. J Bacteriol; 2014 Jul 05; 196(13):2472-80. PubMed ID: 24769696 [Abstract] [Full Text] [Related]
4. Continuous production of succinic acid by a fumarate-reducing bacterium immobilized in a hollow-fiber bioreactor. Wee YJ, Yun JS, Kang KH, Ryu HW. Appl Biochem Biotechnol; 2002 Jul 05; 98-100():1093-104. PubMed ID: 12018233 [Abstract] [Full Text] [Related]
5. Bioconversion of fumarate to succinate using glycerol as a carbon source. Ryu HW, Kang KH, Yun JS. Appl Biochem Biotechnol; 1999 Jul 05; 77-79():511-20. PubMed ID: 10399284 [Abstract] [Full Text] [Related]
6. Characterization of bioconversion of fumarate to succinate by alginate immobilized Enterococcus faecalis RKY1. Ryu HW, Wee YJ. Appl Biochem Biotechnol; 2001 Jul 05; 91-93():525-35. PubMed ID: 11963882 [Abstract] [Full Text] [Related]
7. Fumarate Reductase-Producing Enterococci Reduce Methane Production in Rumen Fermentation In Vitro. Kim SH, Mamuad LL, Kim DW, Kim SK, Lee SS. J Microbiol Biotechnol; 2016 Mar 05; 26(3):558-66. PubMed ID: 26767574 [Abstract] [Full Text] [Related]
8. Routine molecular identification of enterococci by gene-specific PCR and 16S ribosomal DNA sequencing. Angeletti S, Lorino G, Gherardi G, Battistoni F, De Cesaris M, Dicuonzo G. J Clin Microbiol; 2001 Feb 05; 39(2):794-7. PubMed ID: 11158155 [Abstract] [Full Text] [Related]
9. Lactic acid fermentation is the main aerobic metabolic pathway in Enterococcus faecalis metabolizing a high concentration of glycerol. Doi Y. Appl Microbiol Biotechnol; 2018 Dec 05; 102(23):10183-10192. PubMed ID: 30232536 [Abstract] [Full Text] [Related]
10. Reduction of Fumarate to Succinate Mediated by Fusobacterium varium. McDonald NC, White RL. Appl Biochem Biotechnol; 2019 Jan 05; 187(1):163-175. PubMed ID: 29911265 [Abstract] [Full Text] [Related]
11. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss. Murakami N, Oba M, Iwamoto M, Tashiro Y, Noguchi T, Bonkohara K, Abdel-Rahman MA, Zendo T, Shimoda M, Sakai K, Sonomoto K. J Biosci Bioeng; 2016 Jan 05; 121(1):89-95. PubMed ID: 26168904 [Abstract] [Full Text] [Related]
12. Phenotypic and genotypic characterization of Enterococcus spp. of different origins. Franzetti L, Pompei M, Scarpellini M, Galli A. Curr Microbiol; 2004 Oct 05; 49(4):255-60. PubMed ID: 15386113 [Abstract] [Full Text] [Related]
13. L-lactate production from biodiesel-derived crude glycerol by metabolically engineered Enterococcus faecalis: cytotoxic evaluation of biodiesel waste and development of a glycerol-inducible gene expression system. Doi Y. Appl Environ Microbiol; 2015 Mar 05; 81(6):2082-9. PubMed ID: 25576618 [Abstract] [Full Text] [Related]
14. Oligonucleotide microarray for identification of Enterococcus species. Lehner A, Loy A, Behr T, Gaenge H, Ludwig W, Wagner M, Schleifer KH. FEMS Microbiol Lett; 2005 May 01; 246(1):133-42. PubMed ID: 15869972 [Abstract] [Full Text] [Related]
15. PHYSIOLOGY OF THE ENTEROCOCCI AS RELATED TO THEIR TAXONOMY. DEIBEL RH, LAKE DE, NIVEN CF. J Bacteriol; 1963 Dec 01; 86(6):1275-82. PubMed ID: 14086101 [Abstract] [Full Text] [Related]
16. [Desulfovibrio hontreensis sp. nov., a Sulfate-Reducing Bacterium Isolated from Marine Biofoulings at the South Vietnam Coastal Area]. Tarasov AL, Osipov GA, Borzenkov IA. Mikrobiologiia; 2015 Dec 01; 84(5):570-81. PubMed ID: 27169246 [Abstract] [Full Text] [Related]
17. [Isolation and characterization of an Enterococcus strain from Tibetan alpine meadow soil]. Yang L, Deng Y, Zhang H, Diao Q. Wei Sheng Wu Xue Bao; 2012 Nov 04; 52(11):1421-6. PubMed ID: 23383515 [Abstract] [Full Text] [Related]
18. Phylogenetic analysis of Streptococcus saccharolyticus based on 16S rRNA sequencing. Rodrigues U, Collins MD. FEMS Microbiol Lett; 1990 Sep 01; 59(1-2):231-4. PubMed ID: 1703505 [Abstract] [Full Text] [Related]
19. Comparison of the mechanism of glycerol oxidation in aerobically and anaerobically grown Streptococcus faecalis. JACOBS NJ, VANDEMARK PJ. J Bacteriol; 1960 Apr 01; 79(4):532-8. PubMed ID: 14406375 [No Abstract] [Full Text] [Related]
20. Protective effect of Enterococcus faecalis DAPTO 512 on the intestinal tract and gut mucosa: milk allergy application. Belkaaloul K, Haertlé T, Chobert JM, Merah R, Taibi K, Saad El Hachemi HA, Hemch S, Amier L, Chekroun A, Saidi D, Kheroua O. Benef Microbes; 2015 Apr 01; 6(5):679-86. PubMed ID: 26192744 [Abstract] [Full Text] [Related] Page: [Next] [New Search]