These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
205 related items for PubMed ID: 11087352
1. Kinetic isotope effect studies of the reaction catalyzed by uracil DNA glycosylase: evidence for an oxocarbenium ion-uracil anion intermediate. Werner RM, Stivers JT. Biochemistry; 2000 Nov 21; 39(46):14054-64. PubMed ID: 11087352 [Abstract] [Full Text] [Related]
2. Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase. Stivers JT, Pankiewicz KW, Watanabe KA. Biochemistry; 1999 Jan 19; 38(3):952-63. PubMed ID: 9893991 [Abstract] [Full Text] [Related]
3. Escherichia coli uracil DNA glycosylase: NMR characterization of the short hydrogen bond from His187 to uracil O2. Drohat AC, Stivers JT. Biochemistry; 2000 Oct 03; 39(39):11865-75. PubMed ID: 11009598 [Abstract] [Full Text] [Related]
4. Reconstructing the substrate for uracil DNA glycosylase: tracking the transmission of binding energy in catalysis. Jiang YL, Stivers JT. Biochemistry; 2001 Jun 26; 40(25):7710-9. PubMed ID: 11412125 [Abstract] [Full Text] [Related]
5. Transition state structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli and its similarity to transition state analogues. Singh V, Lee JE, Núñez S, Howell PL, Schramm VL. Biochemistry; 2005 Sep 06; 44(35):11647-59. PubMed ID: 16128565 [Abstract] [Full Text] [Related]
6. Probing the limits of electrostatic catalysis by uracil DNA glycosylase using transition state mimicry and mutagenesis. Jiang YL, Drohat AC, Ichikawa Y, Stivers JT. J Biol Chem; 2002 May 03; 277(18):15385-92. PubMed ID: 11859082 [Abstract] [Full Text] [Related]
7. Powering DNA repair through substrate electrostatic interactions. Jiang YL, Ichikawa Y, Song F, Stivers JT. Biochemistry; 2003 Feb 25; 42(7):1922-9. PubMed ID: 12590578 [Abstract] [Full Text] [Related]
11. Stressing-out DNA? The contribution of serine-phosphodiester interactions in catalysis by uracil DNA glycosylase. Werner RM, Jiang YL, Gordley RG, Jagadeesh GJ, Ladner JE, Xiao G, Tordova M, Gilliland GL, Stivers JT. Biochemistry; 2000 Oct 17; 39(41):12585-94. PubMed ID: 11027138 [Abstract] [Full Text] [Related]
12. Pathways of accumulation and repair of deoxyuridine residues in DNA of higher and lower organisms. Vasilenko NL, Nevinsky GA. Biochemistry (Mosc); 2003 Feb 17; 68(2):135-51. PubMed ID: 12693959 [Abstract] [Full Text] [Related]
14. The structural basis of specific base-excision repair by uracil-DNA glycosylase. Savva R, McAuley-Hecht K, Brown T, Pearl L. Nature; 1995 Feb 09; 373(6514):487-93. PubMed ID: 7845459 [Abstract] [Full Text] [Related]
16. The phosphodiester bond 3' to a deoxyuridine residue is crucial for substrate binding for uracil DNA N-glycosylase. Purmal AA, Wallace SS, Kow YW. Biochemistry; 1996 Dec 24; 35(51):16630-7. PubMed ID: 8987998 [Abstract] [Full Text] [Related]
18. Electrostatic guidance of glycosyl cation migration along the reaction coordinate of uracil DNA glycosylase. Bianchet MA, Seiple LA, Jiang YL, Ichikawa Y, Amzel LM, Stivers JT. Biochemistry; 2003 Nov 04; 42(43):12455-60. PubMed ID: 14580190 [Abstract] [Full Text] [Related]
19. Uracil DNA glycosylase: insights from a master catalyst. Stivers JT, Drohat AC. Arch Biochem Biophys; 2001 Dec 01; 396(1):1-9. PubMed ID: 11716455 [Abstract] [Full Text] [Related]
20. The merits of bipartite transition-state mimics for inhibition of uracil DNA glycosylase. Jiang YL, Cao C, Stivers JT, Song F, Ichikawa Y. Bioorg Chem; 2004 Aug 01; 32(4):244-62. PubMed ID: 15210339 [Abstract] [Full Text] [Related] Page: [Next] [New Search]