These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
441 related items for PubMed ID: 11095744
1. Phototransduction in transgenic mice after targeted deletion of the rod transducin alpha -subunit. Calvert PD, Krasnoperova NV, Lyubarsky AL, Isayama T, Nicoló M, Kosaras B, Wong G, Gannon KS, Margolskee RF, Sidman RL, Pugh EN, Makino CL, Lem J. Proc Natl Acad Sci U S A; 2000 Dec 05; 97(25):13913-8. PubMed ID: 11095744 [Abstract] [Full Text] [Related]
2. N-terminal fatty acylation of transducin profoundly influences its localization and the kinetics of photoresponse in rods. Kerov V, Rubin WW, Natochin M, Melling NA, Burns ME, Artemyev NO. J Neurosci; 2007 Sep 19; 27(38):10270-7. PubMed ID: 17881533 [Abstract] [Full Text] [Related]
3. Replacing the rod with the cone transducin subunit decreases sensitivity and accelerates response decay. Chen CK, Woodruff ML, Chen FS, Shim H, Cilluffo MC, Fain GL. J Physiol; 2010 Sep 01; 588(Pt 17):3231-41. PubMed ID: 20603337 [Abstract] [Full Text] [Related]
4. Transducin β-Subunit Can Interact with Multiple G-Protein γ-Subunits to Enable Light Detection by Rod Photoreceptors. Dexter PM, Lobanova ES, Finkelstein S, Spencer WJ, Skiba NP, Arshavsky VY. eNeuro; 2018 Sep 01; 5(3):. PubMed ID: 29911170 [Abstract] [Full Text] [Related]
5. Rod Photoreceptors Avoid Saturation in Bright Light by the Movement of the G Protein Transducin. Frederiksen R, Morshedian A, Tripathy SA, Xu T, Travis GH, Fain GL, Sampath AP. J Neurosci; 2021 Apr 14; 41(15):3320-3330. PubMed ID: 33593858 [Abstract] [Full Text] [Related]
6. Phosducin regulates the expression of transducin betagamma subunits in rod photoreceptors and does not contribute to phototransduction adaptation. Krispel CM, Sokolov M, Chen YM, Song H, Herrmann R, Arshavsky VY, Burns ME. J Gen Physiol; 2007 Sep 14; 130(3):303-12. PubMed ID: 17724163 [Abstract] [Full Text] [Related]
7. A novel form of transducin-dependent retinal degeneration: accelerated retinal degeneration in the absence of rod transducin. Brill E, Malanson KM, Radu RA, Boukharov NV, Wang Z, Chung HY, Lloyd MB, Bok D, Travis GH, Obin M, Lem J. Invest Ophthalmol Vis Sci; 2007 Dec 14; 48(12):5445-53. PubMed ID: 18055791 [Abstract] [Full Text] [Related]
8. Characterization of a transgenic mouse line lacking photoreceptor development within the ventral retina. Fong SL, Criswell MH, Belecky-Adams T, Fong WB, McClintick JN, Kao WW, Edenberg HJ. Exp Eye Res; 2005 Oct 14; 81(4):376-88. PubMed ID: 16054133 [Abstract] [Full Text] [Related]
9. Subunit dissociation and diffusion determine the subcellular localization of rod and cone transducins. Rosenzweig DH, Nair KS, Wei J, Wang Q, Garwin G, Saari JC, Chen CK, Smrcka AV, Swaroop A, Lem J, Hurley JB, Slepak VZ. J Neurosci; 2007 May 16; 27(20):5484-94. PubMed ID: 17507570 [Abstract] [Full Text] [Related]
10. Functional interchangeability of rod and cone transducin alpha-subunits. Deng WT, Sakurai K, Liu J, Dinculescu A, Li J, Pang J, Min SH, Chiodo VA, Boye SL, Chang B, Kefalov VJ, Hauswirth WW. Proc Natl Acad Sci U S A; 2009 Oct 20; 106(42):17681-6. PubMed ID: 19815523 [Abstract] [Full Text] [Related]
11. Visual responses in mice lacking critical components of all known retinal phototransduction cascades. Allen AE, Cameron MA, Brown TM, Vugler AA, Lucas RJ. PLoS One; 2010 Nov 29; 5(11):e15063. PubMed ID: 21124780 [Abstract] [Full Text] [Related]
13. Functionally rodless mice: transgenic models for the investigation of cone function in retinal disease and therapy. Lyubarsky AL, Lem J, Chen J, Falsini B, Iannaccone A, Pugh EN. Vision Res; 2002 Feb 29; 42(4):401-15. PubMed ID: 11853756 [Abstract] [Full Text] [Related]
14. Photoreceptor physiology and evolution: cellular and molecular basis of rod and cone phototransduction. Lamb TD. J Physiol; 2022 Nov 29; 600(21):4585-4601. PubMed ID: 35412676 [Abstract] [Full Text] [Related]
15. Tokay gecko photoreceptors achieve rod-like physiology with cone-like proteins. Zhang X, Wensel TG, Yuan C. Photochem Photobiol; 2006 Nov 29; 82(6):1452-60. PubMed ID: 16553462 [Abstract] [Full Text] [Related]
16. Downregulation of cGMP phosphodiesterase induced by expression of GTPase-deficient cone transducin in mouse rod photoreceptors. Raport CJ, Lem J, Makino C, Chen CK, Fitch CL, Hobson A, Baylor D, Simon MI, Hurley JB. Invest Ophthalmol Vis Sci; 1994 Jun 29; 35(7):2932-47. PubMed ID: 8206711 [Abstract] [Full Text] [Related]
17. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction. Zhang H, Huang W, Zhang H, Zhu X, Craft CM, Baehr W, Chen CK. Mol Vis; 2003 Jun 09; 9():231-7. PubMed ID: 12802257 [Abstract] [Full Text] [Related]
18. Salamander rods and cones contain distinct transducin alpha subunits. Ryan JC, Znoiko S, Xu L, Crouch RK, Ma JX. Vis Neurosci; 2000 Jun 09; 17(6):847-54. PubMed ID: 11193101 [Abstract] [Full Text] [Related]
19. Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings. Nikonov SS, Kholodenko R, Lem J, Pugh EN. J Gen Physiol; 2006 Apr 09; 127(4):359-74. PubMed ID: 16567464 [Abstract] [Full Text] [Related]
20. Functional comparison of rod and cone Gα(t) on the regulation of light sensitivity. Mao W, Miyagishima KJ, Yao Y, Soreghan B, Sampath AP, Chen J. J Biol Chem; 2013 Feb 22; 288(8):5257-67. PubMed ID: 23288843 [Abstract] [Full Text] [Related] Page: [Next] [New Search]