These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
110 related items for PubMed ID: 11101251
1. Justification of statistical overlap theory in programmed temperature gas chromatography: thermodynamic origin of random distribution of retention times. Davis JM, Pompe M, Samuel C. Anal Chem; 2000 Nov 15; 72(22):5700-13. PubMed ID: 11101251 [Abstract] [Full Text] [Related]
2. Assessment by monte carlo simulation of thermodynamic correlation of retention times in dual-column temperature programmed comprehensive two-dimensional gas chromatography. Davis JM. J Sep Sci; 2004 Apr 15; 27(5-6):417-30. PubMed ID: 15335077 [Abstract] [Full Text] [Related]
3. Prediction of retention times of polycyclic aromatic hydrocarbons and n-alkanes in temperature-programmed gas chromatography. Aldaeus F, Thewalim Y, Colmsjö A. Anal Bioanal Chem; 2007 Oct 15; 389(3):941-50. PubMed ID: 17851653 [Abstract] [Full Text] [Related]
4. Retention time prediction of compounds in Grob standard mixture for apolar capillary columns in temperature-programmed gas chromatography. Thewalim Y, Aldaeus F, Colmsjö A. Anal Bioanal Chem; 2009 Jan 15; 393(1):327-34. PubMed ID: 18751687 [Abstract] [Full Text] [Related]
5. General retention parameters of chiral analytes in cyclodextrin gas chromatographic columns. Bicchi C, Blumberg LM, Rubiolo P, Cagliero C. J Chromatogr A; 2014 May 02; 1340():121-7. PubMed ID: 24679828 [Abstract] [Full Text] [Related]
6. Extrathermodynamic parameters of sorption of light hydrocarbons on stationary phases prepared from tricyclononene polymers. Korolev AA, Shiryaeva VE, Popova TP, Bermeshev MV, Kanateva AY, Kurganov AA. J Chromatogr A; 2018 Jan 19; 1533():174-179. PubMed ID: 29276080 [Abstract] [Full Text] [Related]
7. Simulation of gas chromatographic separations and estimation of distribution-centric retention parameters using linear solvation energy relationships. Brehmer T, Duong B, Boeker P, Wüst M, Leppert J. J Chromatogr A; 2024 Feb 22; 1717():464665. PubMed ID: 38281342 [Abstract] [Full Text] [Related]
8. Verification of statistical-overlap theory in micellar electrokinetic chromatography. Liu S, Davis JM. Anal Bioanal Chem; 2005 Jun 22; 382(3):765-76. PubMed ID: 15714302 [Abstract] [Full Text] [Related]
9. Separation performance of cucurbit[8]uril and its coordination complex with cadmium (II) in capillary gas chromatography. Sun T, Ji N, Qi M, Tao Z, Fu R. J Chromatogr A; 2014 May 23; 1343():167-73. PubMed ID: 24745846 [Abstract] [Full Text] [Related]
10. Enthalpy-entropy compensation effect on adsorption of light hydrocarbons on monolithic stationary phases. Korolev AA, Shiryaeva VE, Popova TP, Kurganov AA. J Sep Sci; 2011 Aug 23; 34(16-17):2362-9. PubMed ID: 21595029 [Abstract] [Full Text] [Related]
11. The Enthalpy-entropy Compensation Phenomenon. Limitations for the Use of Some Basic Thermodynamic Equations. Khrapunov S. Curr Protein Pept Sci; 2018 Aug 23; 19(11):1088-1091. PubMed ID: 29779476 [Abstract] [Full Text] [Related]
12. Temperature effects in hydrophobic interaction chromatography. Haidacher D, Vailaya A, Horváth C. Proc Natl Acad Sci U S A; 1996 Mar 19; 93(6):2290-5. PubMed ID: 8637865 [Abstract] [Full Text] [Related]
13. Retention time prediction in temperature-programmed, comprehensive two-dimensional gas chromatography: modeling and error assessment. Barcaru A, Anroedh-Sampat A, Janssen HG, Vivó-Truyols G. J Chromatogr A; 2014 Nov 14; 1368():190-8. PubMed ID: 25441353 [Abstract] [Full Text] [Related]
14. Fast and accurate numerical method for predicting gas chromatography retention time. Claumann CA, Wüst Zibetti A, Bolzan A, Machado RA, Pinto LT. J Chromatogr A; 2015 Aug 07; 1406():258-65. PubMed ID: 26117221 [Abstract] [Full Text] [Related]
15. Retention of polycyclic aromatic hydrocarbons on propyl-phenyl stationary phases in reversed-phase high performance liquid chromatography. Kayillo S, Dennis GR, Shalliker RA. J Chromatogr A; 2007 May 04; 1148(2):168-76. PubMed ID: 17376462 [Abstract] [Full Text] [Related]
16. A study of the enthalpy and entropy contributions of the stationary phase in reversed-phase liquid chromatography. Ranatunga RP, Carr PW. Anal Chem; 2000 Nov 15; 72(22):5679-92. PubMed ID: 11101249 [Abstract] [Full Text] [Related]
17. Combined effects of mobile phase composition and temperature on the retention of homologous and polar test compounds on polydentate C8 column. Jandera P, Krupczyńska K, Vynuchalová K, Buszewski B. J Chromatogr A; 2010 Sep 24; 1217(39):6052-60. PubMed ID: 20728897 [Abstract] [Full Text] [Related]
18. Thermodynamics of interactions between amino acid side chains: experimental differentiation of aromatic-aromatic, aromatic-aliphatic, and aliphatic-aliphatic side-chain interactions in water. Pereira de Araujo AF, Pochapsky TC, Joughin B. Biophys J; 1999 May 24; 76(5):2319-28. PubMed ID: 10233051 [Abstract] [Full Text] [Related]
19. Temperature dependence of the Kováts retention index. The entropy index. Görgényi M, Dewulf J, Van Langenhove H. J Chromatogr A; 2006 Dec 22; 1137(1):84-90. PubMed ID: 17055518 [Abstract] [Full Text] [Related]
20. Enthalpy-Entropy Compensation Effect in Saturated Solutions on an Example of Polynuclear Aromatics According to Thermodynamics at Melting Temperature. Mianowski A, Łabojko G. Entropy (Basel); 2022 Dec 28; 25(1):. PubMed ID: 36673196 [Abstract] [Full Text] [Related] Page: [Next] [New Search]