These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


382 related items for PubMed ID: 11102491

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Neurotoxicity of acute glutamate transport blockade depends on coactivation of both NMDA and AMPA/Kainate receptors in organotypic hippocampal cultures.
    Vornov JJ, Tasker RC, Park J.
    Exp Neurol; 1995 May; 133(1):7-17. PubMed ID: 7541369
    [Abstract] [Full Text] [Related]

  • 4. Changes in the effect of isoflurane on N-methyl-D-aspartic acid-gated currents in cultured cerebral cortical neurons with time in culture: evidence for subunit specificity.
    Ming Z, Griffith BL, Breese GR, Mueller RA, Criswell HE.
    Anesthesiology; 2002 Oct; 97(4):856-67. PubMed ID: 12357151
    [Abstract] [Full Text] [Related]

  • 5. Cortical and striatal neuronal cultures of the same embryonic origin show intrinsic differences in glutamate receptor expression and vulnerability to excitotoxicity.
    Kovács AD, Cebers G, Cebere A, Moreira T, Liljequist S.
    Exp Neurol; 2001 Mar; 168(1):47-62. PubMed ID: 11170720
    [Abstract] [Full Text] [Related]

  • 6. GMP prevents excitotoxicity mediated by NMDA receptor activation but not by reversal activity of glutamate transporters in rat hippocampal slices.
    Molz S, Tharine DC, Decker H, Tasca CI.
    Brain Res; 2008 Sep 22; 1231():113-20. PubMed ID: 18655777
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Dihydrokainate-sensitive neuronal glutamate transport is required for protection of rat cortical neurons in culture against synaptically released glutamate.
    Wang GJ, Chung HJ, Schnuer J, Lea E, Robinson MB, Potthoff WK, Aizenman E, Rosenberg PA.
    Eur J Neurosci; 1998 Aug 22; 10(8):2523-31. PubMed ID: 9767383
    [Abstract] [Full Text] [Related]

  • 9. Increased contribution of NR2A subunit to synaptic NMDA receptors in developing rat cortical neurons.
    Stocca G, Vicini S.
    J Physiol; 1998 Feb 15; 507 ( Pt 1)(Pt 1):13-24. PubMed ID: 9490809
    [Abstract] [Full Text] [Related]

  • 10. Transforming growth factor-beta2 increases NMDA receptor-mediated excitotoxicity in rat cerebral cortical neurons independently of glia.
    Kane CJ, Brown GJ, Phelan KD.
    Neurosci Lett; 1996 Feb 02; 204(1-2):93-6. PubMed ID: 8929986
    [Abstract] [Full Text] [Related]

  • 11. Role of NR2B-containing N-methyl-D-aspartate receptors in haloperidol-induced c-Fos expression in the striatum and nucleus accumbens.
    Lee J, Rajakumar N.
    Neuroscience; 2003 Feb 02; 122(3):739-45. PubMed ID: 14622917
    [Abstract] [Full Text] [Related]

  • 12. Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation.
    Hashimoto R, Hough C, Nakazawa T, Yamamoto T, Chuang DM.
    J Neurochem; 2002 Feb 02; 80(4):589-97. PubMed ID: 11841566
    [Abstract] [Full Text] [Related]

  • 13. Excitotoxicity in vitro by NR2A- and NR2B-containing NMDA receptors.
    von Engelhardt J, Coserea I, Pawlak V, Fuchs EC, Köhr G, Seeburg PH, Monyer H.
    Neuropharmacology; 2007 Jul 02; 53(1):10-7. PubMed ID: 17570444
    [Abstract] [Full Text] [Related]

  • 14. Changes in secondary glutamate release underlie the developmental regulation of excitotoxic neuronal cell death.
    Fogal B, Trettel J, Uliasz TF, Levine ES, Hewett SJ.
    Neuroscience; 2005 Jul 02; 132(4):929-42. PubMed ID: 15857699
    [Abstract] [Full Text] [Related]

  • 15. IGF-1-Involved Negative Feedback of NR2B NMDA Subunits Protects Cultured Hippocampal Neurons Against NMDA-Induced Excitotoxicity.
    Li Y, Sun W, Han S, Li J, Ding S, Wang W, Yin Y.
    Mol Neurobiol; 2017 Jan 02; 54(1):684-696. PubMed ID: 26758454
    [Abstract] [Full Text] [Related]

  • 16. Dopamine D1 receptors co-distribute with N-methyl-D-aspartic acid type-1 subunits and modulate synaptically-evoked N-methyl-D-aspartic acid currents in rat basolateral amygdala.
    Pickel VM, Colago EE, Mania I, Molosh AI, Rainnie DG.
    Neuroscience; 2006 Oct 27; 142(3):671-90. PubMed ID: 16905271
    [Abstract] [Full Text] [Related]

  • 17. Functional in vitro characterization of CR 3394: a novel voltage dependent N-methyl-D-aspartate (NMDA) receptor antagonist.
    Losi G, Lanza M, Makovec F, Artusi R, Caselli G, Puia G.
    Neuropharmacology; 2006 Mar 27; 50(3):277-85. PubMed ID: 16236334
    [Abstract] [Full Text] [Related]

  • 18. Glutamate transport blockade has a differential effect on AMPA and NMDA receptor-mediated synaptic transmission in the developing barrel cortex.
    Kidd FL, Isaac JT.
    Neuropharmacology; 2000 Mar 03; 39(5):725-32. PubMed ID: 10699439
    [Abstract] [Full Text] [Related]

  • 19. ATP inhibits NMDA receptors after heterologous expression and in cultured hippocampal neurons and attenuates NMDA-mediated neurotoxicity.
    Ortinau S, Laube B, Zimmermann H.
    J Neurosci; 2003 Jun 15; 23(12):4996-5003. PubMed ID: 12832522
    [Abstract] [Full Text] [Related]

  • 20. Functional NMDA receptor subtype 2B is expressed in astrocytes after ischemia in vivo and anoxia in vitro.
    Krebs C, Fernandes HB, Sheldon C, Raymond LA, Baimbridge KG.
    J Neurosci; 2003 Apr 15; 23(8):3364-72. PubMed ID: 12716944
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.