These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Bessel beam expansion of linear focused ultrasound. Daniel TD, Gittes F, Kirsteins IP, Marston PL. J Acoust Soc Am; 2018 Dec; 144(6):3076. PubMed ID: 30599644 [Abstract] [Full Text] [Related]
4. Acoustic wave propagation in gassy porous marine sediments: The rheological and the elastic effects. Dogan H, White PR, Leighton TG. J Acoust Soc Am; 2017 Mar; 141(3):2277. PubMed ID: 28372087 [Abstract] [Full Text] [Related]
5. The influence of large-scale seafloor slope and average bottom sound speed on low-grazing-angle monostatic acoustic scattering. Greaves RJ, Stephen RA. J Acoust Soc Am; 2003 May; 113(5):2548-61. PubMed ID: 12765374 [Abstract] [Full Text] [Related]
6. Shear wave velocity and attenuation in the upper layer of ocean bottoms from long-range acoustic field measurements. Zhou JX, Zhang XZ. J Acoust Soc Am; 2012 Dec; 132(6):3698-705. PubMed ID: 23231101 [Abstract] [Full Text] [Related]
7. Comment on "A theoretical framework for quantitatively characterizing sound field diffusion based on scattering coefficient and absorption coefficient of walls" [J. Acoust. Soc. Am. 128, 1140-1148 (2010)] (L). Omoto A. J Acoust Soc Am; 2013 Jan; 133(1):9-12. PubMed ID: 23297877 [Abstract] [Full Text] [Related]
8. Backscatter from a limestone seafloor at 2-3.5 kHz: measurements and modeling. Soukup RJ, Gragg RF. J Acoust Soc Am; 2003 May; 113(5):2501-14. PubMed ID: 12765370 [Abstract] [Full Text] [Related]
9. Estimation of a sediment attenuation coefficient using mid-frequency bottom-interacting signals in Jinhae Bay, Southeast Korea. Kwon H, Kim BN, Choi JW. J Acoust Soc Am; 2022 Jun; 151(6):4291. PubMed ID: 35778164 [Abstract] [Full Text] [Related]
11. Numerical and analytical solutions for sound propagation and absorption in porous media at high sound pressure levels. Zhang B, Chen T, Zhao Y, Zhang W, Zhu J. J Acoust Soc Am; 2012 Sep; 132(3):1436-49. PubMed ID: 22978873 [Abstract] [Full Text] [Related]
12. Sound propagation in concentrated emulsions: comparison of coupled phase model and core-shell model. Evans JM, Attenborough K. J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):1911-7. PubMed ID: 12430802 [Abstract] [Full Text] [Related]
13. Ray-based description of mode coupling by sound speed fluctuations in the ocean. Virovlyansky AL. J Acoust Soc Am; 2015 Apr; 137(4):2137-47. PubMed ID: 25920863 [Abstract] [Full Text] [Related]
14. Comment on "Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young's modulus" [J. Acoust. Soc. Am. 132, 2887-2895 (2012)]. Marston PL. J Acoust Soc Am; 2014 Mar; 135(3):1031-3. PubMed ID: 24606246 [Abstract] [Full Text] [Related]
16. Normal mode solution for low-frequency sound propagation in a downward refracting atmosphere above a complex impedance plane. Raspet R, Baird G, Wu W. J Acoust Soc Am; 1992 Mar; 91(3):1341-52. PubMed ID: 1564188 [Abstract] [Full Text] [Related]
17. Diffraction of a spherical wave by a hard half-plane: Approximation of the edge field in the frequency domain. Ouis D. J Acoust Soc Am; 2019 Jan; 145(1):400. PubMed ID: 30710954 [Abstract] [Full Text] [Related]