These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1523 related items for PubMed ID: 11114250

  • 1. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.
    Han S, Arvai AS, Clancy SB, Tainer JA.
    J Mol Biol; 2001 Jan 05; 305(1):95-107. PubMed ID: 11114250
    [Abstract] [Full Text] [Related]

  • 2. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme.
    Vogelsgesang M, Aktories K.
    Biochemistry; 2006 Jan 24; 45(3):1017-25. PubMed ID: 16411778
    [Abstract] [Full Text] [Related]

  • 3. Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex.
    Han S, Craig JA, Putnam CD, Carozzi NB, Tainer JA.
    Nat Struct Biol; 1999 Oct 24; 6(10):932-6. PubMed ID: 10504727
    [Abstract] [Full Text] [Related]

  • 4. Crystal structure of the Clostridium limosum C3 exoenzyme.
    Vogelsgesang M, Stieglitz B, Herrmann C, Pautsch A, Aktories K.
    FEBS Lett; 2008 Apr 02; 582(7):1032-6. PubMed ID: 18325337
    [Abstract] [Full Text] [Related]

  • 5. Rho-specific Bacillus cereus ADP-ribosyltransferase C3cer cloning and characterization.
    Wilde C, Vogelsgesang M, Aktories K.
    Biochemistry; 2003 Aug 19; 42(32):9694-702. PubMed ID: 12911311
    [Abstract] [Full Text] [Related]

  • 6. The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases.
    Han S, Tainer JA.
    Int J Med Microbiol; 2002 Feb 19; 291(6-7):523-9. PubMed ID: 11890553
    [Abstract] [Full Text] [Related]

  • 7. C3 exoenzyme from Clostridium botulinum: structure of a tetragonal crystal form and a reassessment of NAD-induced flexure.
    Evans HR, Holloway DE, Sutton JM, Ayriss J, Shone CC, Acharya KR.
    Acta Crystallogr D Biol Crystallogr; 2004 Aug 19; 60(Pt 8):1502-5. PubMed ID: 15272191
    [Abstract] [Full Text] [Related]

  • 8. Conformational plasticity is crucial for C3-RhoA complex formation by ARTT-loop.
    Tsuge H, Yoshida T, Tsurumura T.
    Pathog Dis; 2015 Dec 19; 73(9):ftv094. PubMed ID: 26474844
    [Abstract] [Full Text] [Related]

  • 9. A family of killer toxins. Exploring the mechanism of ADP-ribosylating toxins.
    Holbourn KP, Shone CC, Acharya KR.
    FEBS J; 2006 Oct 19; 273(20):4579-93. PubMed ID: 16956368
    [Abstract] [Full Text] [Related]

  • 10. NAD binding induces conformational changes in Rho ADP-ribosylating clostridium botulinum C3 exoenzyme.
    Ménétrey J, Flatau G, Stura EA, Charbonnier JB, Gas F, Teulon JM, Le Du MH, Boquet P, Menez A.
    J Biol Chem; 2002 Aug 23; 277(34):30950-7. PubMed ID: 12029083
    [Abstract] [Full Text] [Related]

  • 11. Molecular recognition of an ADP-ribosylating Clostridium botulinum C3 exoenzyme by RalA GTPase.
    Holbourn KP, Sutton JM, Evans HR, Shone CC, Acharya KR.
    Proc Natl Acad Sci U S A; 2005 Apr 12; 102(15):5357-62. PubMed ID: 15809419
    [Abstract] [Full Text] [Related]

  • 12. The uptake machinery of clostridial actin ADP-ribosylating toxins--a cell delivery system for fusion proteins and polypeptide drugs.
    Barth H, Blöcker D, Aktories K.
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Dec 12; 366(6):501-12. PubMed ID: 12444490
    [Abstract] [Full Text] [Related]

  • 13. Rho-ADP-ribosylating exoenzyme from Bacillus cereus. Purification, characterization, and identification of the NAD-binding site.
    Just I, Selzer J, Jung M, van Damme J, Vandekerckhove J, Aktories K.
    Biochemistry; 1995 Jan 10; 34(1):334-40. PubMed ID: 7819216
    [Abstract] [Full Text] [Related]

  • 14. Conserved structural motif for recognizing nicotinamide adenine dinucleotide in poly(ADP-ribose) polymerases and ADP-ribosylating toxins: implications for structure-based drug design.
    Lee YM, Babu CS, Chen YC, Milcic M, Qu Y, Lim C.
    J Med Chem; 2010 May 27; 53(10):4038-49. PubMed ID: 20420408
    [Abstract] [Full Text] [Related]

  • 15. ADP-ribosylation of the rho/rac gene products by botulinum ADP-ribosyltransferase: identity of the enzyme and effects on protein and cell functions.
    Narumiya S, Morii N, Sekine A, Kozaki S.
    J Physiol (Paris); 1990 May 27; 84(4):267-72. PubMed ID: 2127805
    [Abstract] [Full Text] [Related]

  • 16. Homology modeling and molecular dynamics studies of a novel C3-like ADP-ribosyltransferase.
    Xiao JF, Li ZS, Sun CC.
    Bioorg Med Chem; 2004 May 01; 12(9):2035-41. PubMed ID: 15080907
    [Abstract] [Full Text] [Related]

  • 17. Salmonella enterica SpvB ADP-ribosylates actin at position arginine-177-characterization of the catalytic domain within the SpvB protein and a comparison to binary clostridial actin-ADP-ribosylating toxins.
    Hochmann H, Pust S, von Figura G, Aktories K, Barth H.
    Biochemistry; 2006 Jan 31; 45(4):1271-7. PubMed ID: 16430223
    [Abstract] [Full Text] [Related]

  • 18. Structure-function analysis of the Rho-ADP-ribosylating exoenzyme C3stau2 from Staphylococcus aureus.
    Wilde C, Just I, Aktories K.
    Biochemistry; 2002 Feb 05; 41(5):1539-44. PubMed ID: 11814347
    [Abstract] [Full Text] [Related]

  • 19. Crystal structure of the C3bot-RalA complex reveals a novel type of action of a bacterial exoenzyme.
    Pautsch A, Vogelsgesang M, Tränkle J, Herrmann C, Aktories K.
    EMBO J; 2005 Oct 19; 24(20):3670-80. PubMed ID: 16177825
    [Abstract] [Full Text] [Related]

  • 20. Substrate binding and catalysis of ecto-ADP-ribosyltransferase 2.2 from rat.
    Ritter H, Koch-Nolte F, Marquez VE, Schulz GE.
    Biochemistry; 2003 Sep 02; 42(34):10155-62. PubMed ID: 12939142
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 77.