These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
171 related items for PubMed ID: 11125590
1. Prediction of short cardiovascular variability signals based on conditional distribution. Porta A, Baselli G, Guzzetti S, Pagani M, Malliani A, Cerutti S. IEEE Trans Biomed Eng; 2000 Dec; 47(12):1555-64. PubMed ID: 11125590 [Abstract] [Full Text] [Related]
2. Complexity and nonlinearity in short-term heart period variability: comparison of methods based on local nonlinear prediction. Porta A, Guzzetti S, Furlan R, Gnecchi-Ruscone T, Montano N, Malliani A. IEEE Trans Biomed Eng; 2007 Jan; 54(1):94-106. PubMed ID: 17260860 [Abstract] [Full Text] [Related]
3. Characterization of complex heart rate dynamics and their pharmacological disorders by non-linear prediction and special data transformations. Hoyer D, Schmidt K, Zwiener U, Bauer R. Cardiovasc Res; 1996 Mar; 31(3):434-40. PubMed ID: 8681330 [Abstract] [Full Text] [Related]
4. Mixed predictability and cross-validation to assess non-linear Granger causality in short cardiovascular variability series. Faes L, Cucino R, Nollo G. Biomed Tech (Berl); 2006 Oct; 51(4):255-9. PubMed ID: 17061952 [Abstract] [Full Text] [Related]
5. Time-varying surrogate data to assess nonlinearity in nonstationary time series: application to heart rate variability. Faes L, Zhao H, Chon KH, Nollo G. IEEE Trans Biomed Eng; 2009 Mar; 56(3):685-95. PubMed ID: 19272872 [Abstract] [Full Text] [Related]
6. A method for the time-varying nonlinear prediction of complex nonstationary biomedical signals. Faes L, Chon KH, Nollo G. IEEE Trans Biomed Eng; 2009 Feb; 56(2):205-9. PubMed ID: 19272876 [Abstract] [Full Text] [Related]
7. Short- and long-term variations in non-linear dynamics of heart rate variability. Kanters JK, Højgaard MV, Agner E, Holstein-Rathlou NH. Cardiovasc Res; 1996 Mar; 31(3):400-9. PubMed ID: 8681327 [Abstract] [Full Text] [Related]
8. Sampling frequency of the RR interval time series for spectral analysis of heart rate variability. Singh D, Vinod K, Saxena SC. J Med Eng Technol; 2004 Mar; 28(6):263-72. PubMed ID: 15513744 [Abstract] [Full Text] [Related]
9. Detection of cardiac variability in the isolated rat heart. Schumacher AM, Zbilut JP, Webber CL, Schwertz DW, Piano MR. Biol Res Nurs; 2006 Jul; 8(1):55-66. PubMed ID: 16766629 [Abstract] [Full Text] [Related]
10. Heart rate and blood pressure variability in subjects with vasovagal syncope. Piccirillo G, Naso C, Moisè A, Lionetti M, Nocco M, Di Carlo S, De Laurentis T, Magrì D, Cacciafesta M, Marigliano V. Clin Sci (Lond); 2004 Jul; 107(1):55-61. PubMed ID: 14982493 [Abstract] [Full Text] [Related]
11. Assessing causality in normal and impaired short-term cardiovascular regulation via nonlinear prediction methods. Nollo G, Faes L, Antolini R, Porta A. Philos Trans A Math Phys Eng Sci; 2009 Apr 13; 367(1892):1423-40. PubMed ID: 19324717 [Abstract] [Full Text] [Related]
12. Bivariate nonlinear prediction to quantify the strength of complex dynamical interactions in short-term cardiovascular variability. Faes L, Nollo G. Med Biol Eng Comput; 2006 May 13; 44(5):383-92. PubMed ID: 16937180 [Abstract] [Full Text] [Related]
13. Causal transfer function analysis to describe closed loop interactions between cardiovascular and cardiorespiratory variability signals. Faes L, Porta A, Cucino R, Cerutti S, Antolini R, Nollo G. Biol Cybern; 2004 Jun 13; 90(6):390-9. PubMed ID: 15278463 [Abstract] [Full Text] [Related]
14. Nonlinear analysis of the separate contributions of autonomic nervous systems to heart rate variability using principal dynamic modes. Zhong Y, Wang H, Ju KH, Jan KM, Chon KH. IEEE Trans Biomed Eng; 2004 Feb 13; 51(2):255-62. PubMed ID: 14765698 [Abstract] [Full Text] [Related]
15. Linear and non-linear analyses of heart rate variability: a minireview. Mansier P, Clairambault J, Charlotte N, Médigue C, Vermeiren C, LePape G, Carré F, Gounaropoulou A, Swynghedauw B. Cardiovasc Res; 1996 Mar 13; 31(3):371-9. PubMed ID: 8681324 [Abstract] [Full Text] [Related]
16. Role of the autonomic nervous system in generating non-linear dynamics in short-term heart period variability. Porta A, Guzzetti S, Borroni E, Furlan R, Montano N, Malliani A. Biomed Tech (Berl); 2006 Oct 13; 51(4):174-7. PubMed ID: 17061932 [Abstract] [Full Text] [Related]
17. Information domain analysis of cardiovascular variability signals: evaluation of regularity, synchronisation and co-ordination. Porta A, Guzzetti S, Montano N, Pagani M, Somers V, Malliani A, Baselli G, Cerutti S. Med Biol Eng Comput; 2000 Mar 13; 38(2):180-8. PubMed ID: 10829411 [Abstract] [Full Text] [Related]
18. Wavelet decomposition of cardiovascular signals for baroreceptor function tests in pigs. Wiklund U, Akay M, Morrison S, Niklasson U. IEEE Trans Biomed Eng; 2002 Jul 13; 49(7):651-61. PubMed ID: 12083299 [Abstract] [Full Text] [Related]
19. An improved windowing technique for heart rate variability power spectrum estimation. Singh D, Vinod K, Saxena SC, Deepak KK. J Med Eng Technol; 2005 Jul 13; 29(2):95-101. PubMed ID: 15804859 [Abstract] [Full Text] [Related]
20. Assessment of Granger causality by nonlinear model identification: application to short-term cardiovascular variability. Faes L, Nollo G, Chon KH. Ann Biomed Eng; 2008 Mar 13; 36(3):381-95. PubMed ID: 18228143 [Abstract] [Full Text] [Related] Page: [Next] [New Search]