These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
107 related items for PubMed ID: 11133272
1. Solution structure calculations through self-orientation in a magnetic field of a cerium(III) substituted calcium-binding protein. Bertini I, Janik MB, Liu G, Luchinat C, Rosato A. J Magn Reson; 2001 Jan; 148(1):23-30. PubMed ID: 11133272 [Abstract] [Full Text] [Related]
2. Solution structure of the paramagnetic complex of the N-terminal domain of calmodulin with two Ce3+ ions by 1H NMR. Bentrop D, Bertini I, Cremonini MA, Forsén S, Luchinat C, Malmendal A. Biochemistry; 1997 Sep 30; 36(39):11605-18. PubMed ID: 9305950 [Abstract] [Full Text] [Related]
3. Monitoring the early steps of unfolding of dicalcium and mono-Ce3+-substituted forms of P43M calbindin D9k. Jiménez B, Poggi L, Piccioli M. Biochemistry; 2003 Nov 11; 42(44):13066-73. PubMed ID: 14596622 [Abstract] [Full Text] [Related]
4. Backbone-only protein solution structures with a combination of classical and paramagnetism-based constraints: a method that can be scaled to large molecules. Barbieri R, Luchinat C, Parigi G. Chemphyschem; 2004 Jun 21; 5(6):797-806. PubMed ID: 15253307 [Abstract] [Full Text] [Related]
5. Structural basis for the observed differential magnetic anisotropic tensorial values in calcium binding proteins. Mustafi SM, Mukherjee S, Chary KV, Cavallaro G. Proteins; 2006 Nov 15; 65(3):656-69. PubMed ID: 16981203 [Abstract] [Full Text] [Related]
6. pK(a) calculations of calbindin D(9k): effects of Ca(2+) binding, protein dielectric constant, and ionic strength. Juffer AH, Vogel HJ. Proteins; 2000 Dec 01; 41(4):554-67. PubMed ID: 11056042 [Abstract] [Full Text] [Related]
7. Weak alignment of paramagnetic proteins warrants correction for residual CSA effects in measurements of pseudocontact shifts. John M, Park AY, Pintacuda G, Dixon NE, Otting G. J Am Chem Soc; 2005 Dec 14; 127(49):17190-1. PubMed ID: 16332059 [Abstract] [Full Text] [Related]
13. Backbone-only restraints for fast determination of the protein fold: the role of paramagnetism-based restraints. Cytochrome b562 as an example. Banci L, Bertini I, Felli IC, Sarrou J. J Magn Reson; 2005 Feb 14; 172(2):191-200. PubMed ID: 15649745 [Abstract] [Full Text] [Related]
14. Application of the paramagnetic dipole field for solution NMR active site structure determination in low-spin, cyanide-inhibited ferric hemoproteins. La Mar GN. IUBMB Life; 2007 Feb 14; 59(8-9):513-27. PubMed ID: 17701546 [Abstract] [Full Text] [Related]
15. Solution structure of oxidized horse heart cytochrome c. Banci L, Bertini I, Gray HB, Luchinat C, Reddig T, Rosato A, Turano P. Biochemistry; 1997 Aug 12; 36(32):9867-77. PubMed ID: 9245419 [Abstract] [Full Text] [Related]
16. Solution structure and backbone dynamics of the defunct domain of calcium vector protein. Théret I, Baladi S, Cox JA, Gallay J, Sakamoto H, Craescu CT. Biochemistry; 2001 Nov 20; 40(46):13888-97. PubMed ID: 11705378 [Abstract] [Full Text] [Related]
20. Paramagnetism-based refinement strategy for the solution structure of human alpha-parvalbumin. Baig I, Bertini I, Del Bianco C, Gupta YK, Lee YM, Luchinat C, Quattrone A. Biochemistry; 2004 May 11; 43(18):5562-73. PubMed ID: 15122922 [Abstract] [Full Text] [Related] Page: [Next] [New Search]