These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
176 related items for PubMed ID: 11139621
1. DNA binding sites for the Mlc and NagC proteins: regulation of nagE, encoding the N-acetylglucosamine-specific transporter in Escherichia coli. Plumbridge J. Nucleic Acids Res; 2001 Jan 15; 29(2):506-14. PubMed ID: 11139621 [Abstract] [Full Text] [Related]
2. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently). Plumbridge J. J Mol Microbiol Biotechnol; 2001 Jul 15; 3(3):371-80. PubMed ID: 11361067 [Abstract] [Full Text] [Related]
3. Nag repressor-operator interactions: protein-DNA contacts cover more than two turns of the DNA helix. Plumbridge J, Kolb A. J Mol Biol; 1995 Jun 23; 249(5):890-902. PubMed ID: 7791215 [Abstract] [Full Text] [Related]
4. Control of the expression of the manXYZ operon in Escherichia coli: Mlc is a negative regulator of the mannose PTS. Plumbridge J. Mol Microbiol; 1998 Jan 23; 27(2):369-80. PubMed ID: 9484892 [Abstract] [Full Text] [Related]
5. CAP and Nag repressor binding to the regulatory regions of the nagE-B and manX genes of Escherichia coli. Plumbridge J, Kolb A. J Mol Biol; 1991 Feb 20; 217(4):661-79. PubMed ID: 1848637 [Abstract] [Full Text] [Related]
6. Different regions of Mlc and NagC, homologous transcriptional repressors controlling expression of the glucose and N-acetylglucosamine phosphotransferase systems in Escherichia coli, are required for inducer signal recognition. Pennetier C, Domínguez-Ramírez L, Plumbridge J. Mol Microbiol; 2008 Jan 20; 67(2):364-77. PubMed ID: 18067539 [Abstract] [Full Text] [Related]
7. Dual inducer signal recognition by an Mlc homologue. Bréchemier-Baey D, Pennetier C, Plumbridge J. Microbiology (Reading); 2015 Aug 20; 161(8):1694-1706. PubMed ID: 26293172 [Abstract] [Full Text] [Related]
8. Switching control of expression of ptsG from the Mlc regulon to the NagC regulon. El Qaidi S, Plumbridge J. J Bacteriol; 2008 Jul 20; 190(13):4677-86. PubMed ID: 18469102 [Abstract] [Full Text] [Related]
9. Co-ordinated regulation of amino sugar biosynthesis and degradation: the NagC repressor acts as both an activator and a repressor for the transcription of the glmUS operon and requires two separated NagC binding sites. Plumbridge J. EMBO J; 1995 Aug 15; 14(16):3958-65. PubMed ID: 7545108 [Abstract] [Full Text] [Related]
10. The linker sequence, joining the DNA-binding domain of the homologous transcription factors, Mlc and NagC, to the rest of the protein, determines the specificity of their DNA target recognition in Escherichia coli. Bréchemier-Baey D, Domínguez-Ramírez L, Plumbridge J. Mol Microbiol; 2012 Sep 15; 85(5):1007-19. PubMed ID: 22788997 [Abstract] [Full Text] [Related]
11. Cloning and characterization of the N-acetylglucosamine operon of Escherichia coli. Peri KG, Goldie H, Waygood EB. Biochem Cell Biol; 1990 Jan 15; 68(1):123-37. PubMed ID: 2190615 [Abstract] [Full Text] [Related]
12. Signal transduction between a membrane-bound transporter, PtsG, and a soluble transcription factor, Mlc, of Escherichia coli. Lee SJ, Boos W, Bouché JP, Plumbridge J. EMBO J; 2000 Oct 16; 19(20):5353-61. PubMed ID: 11032803 [Abstract] [Full Text] [Related]
13. Repression and induction of the nag regulon of Escherichia coli K-12: the roles of nagC and nagA in maintenance of the uninduced state. Plumbridge JA. Mol Microbiol; 1991 Aug 16; 5(8):2053-62. PubMed ID: 1766379 [Abstract] [Full Text] [Related]