These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


231 related items for PubMed ID: 11152072

  • 1. Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin.
    Achterholt S, Priefert H, Steinbüchel A.
    Appl Microbiol Biotechnol; 2000 Dec; 54(6):799-807. PubMed ID: 11152072
    [Abstract] [Full Text] [Related]

  • 2. Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. Strain HR199.
    Overhage J, Priefert H, Steinbüchel A.
    Appl Environ Microbiol; 1999 Nov; 65(11):4837-47. PubMed ID: 10543794
    [Abstract] [Full Text] [Related]

  • 3. The coenzyme A-dependent, non-beta-oxidation pathway and not direct deacetylation is the major route for ferulic acid degradation in Delftia acidovorans.
    Plaggenborg R, Steinbüchel A, Priefert H.
    FEMS Microbiol Lett; 2001 Nov 27; 205(1):9-16. PubMed ID: 11728709
    [Abstract] [Full Text] [Related]

  • 4. Metabolic engineering of Pediococcus acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology.
    Kaur B, Chakraborty D, Kumar B.
    Appl Microbiol Biotechnol; 2014 Oct 27; 98(20):8539-51. PubMed ID: 25077778
    [Abstract] [Full Text] [Related]

  • 5. Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440.
    Plaggenborg R, Overhage J, Steinbüchel A, Priefert H.
    Appl Microbiol Biotechnol; 2003 Jun 27; 61(5-6):528-35. PubMed ID: 12764569
    [Abstract] [Full Text] [Related]

  • 6. Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate.
    Priefert H, Rabenhorst J, Steinbüchel A.
    J Bacteriol; 1997 Apr 27; 179(8):2595-607. PubMed ID: 9098058
    [Abstract] [Full Text] [Related]

  • 7. Cloning and characterization of the ferulic acid catabolic genes of Sphingomonas paucimobilis SYK-6.
    Masai E, Harada K, Peng X, Kitayama H, Katayama Y, Fukuda M.
    Appl Environ Microbiol; 2002 Sep 27; 68(9):4416-24. PubMed ID: 12200295
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin.
    Yang W, Tang H, Ni J, Wu Q, Hua D, Tao F, Xu P.
    PLoS One; 2013 Sep 27; 8(6):e67339. PubMed ID: 23840666
    [Abstract] [Full Text] [Related]

  • 10. Production of vanillin by metabolically engineered Escherichia coli.
    Yoon SH, Li C, Kim JE, Lee SH, Yoon JY, Choi MS, Seo WT, Yang JK, Kim JY, Kim SW.
    Biotechnol Lett; 2005 Nov 27; 27(22):1829-32. PubMed ID: 16314978
    [Abstract] [Full Text] [Related]

  • 11. Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol.
    Plaggenborg R, Overhage J, Loos A, Archer JA, Lessard P, Sinskey AJ, Steinbüchel A, Priefert H.
    Appl Microbiol Biotechnol; 2006 Oct 27; 72(4):745-55. PubMed ID: 16421716
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid.
    Di Gioia D, Luziatelli F, Negroni A, Ficca AG, Fava F, Ruzzi M.
    J Biotechnol; 2011 Dec 20; 156(4):309-16. PubMed ID: 21875627
    [Abstract] [Full Text] [Related]

  • 15. Metabolic engineering of E. coli top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM.
    Chakraborty D, Gupta G, Kaur B.
    Protein Expr Purif; 2016 Dec 20; 128():123-33. PubMed ID: 27591788
    [Abstract] [Full Text] [Related]

  • 16. Metabolic Engineering of the Actinomycete Amycolatopsis sp. Strain ATCC 39116 towards Enhanced Production of Natural Vanillin.
    Fleige C, Meyer F, Steinbüchel A.
    Appl Environ Microbiol; 2016 Jun 01; 82(11):3410-3419. PubMed ID: 27037121
    [Abstract] [Full Text] [Related]

  • 17. Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid.
    Graf N, Altenbuchner J.
    Appl Microbiol Biotechnol; 2014 Jan 01; 98(1):137-49. PubMed ID: 24136472
    [Abstract] [Full Text] [Related]

  • 18. Application of recombinant Pediococcus acidilactici BD16 (fcs +/ech +) for bioconversion of agrowaste to vanillin.
    Chakraborty D, Selvam A, Kaur B, Wong JWC, Karthikeyan OP.
    Appl Microbiol Biotechnol; 2017 Jul 01; 101(14):5615-5626. PubMed ID: 28432440
    [Abstract] [Full Text] [Related]

  • 19. Biosynthesis of Vanillin by Rational Design of Enoyl-CoA Hydratase/Lyase.
    Ye Q, Xu W, He Y, Li H, Zhao F, Zhang J, Song Y.
    Int J Mol Sci; 2023 Sep 04; 24(17):. PubMed ID: 37686435
    [Abstract] [Full Text] [Related]

  • 20. Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin.
    Fleige C, Hansen G, Kroll J, Steinbüchel A.
    Appl Environ Microbiol; 2013 Jan 04; 79(1):81-90. PubMed ID: 23064333
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.