These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
105 related items for PubMed ID: 1115560
1. The uptake of fructose by Pseudomonas putida. Vicente M. Arch Microbiol; 1975; 102(2):163-6. PubMed ID: 1115560 [Abstract] [Full Text] [Related]
2. The uptake of 2-ketogluconate by Pseudomonas putida. Torrontegui D, Díaz R, Cánovas JL. Arch Microbiol; 1976 Oct 11; 110(1):43-8. PubMed ID: 1015939 [Abstract] [Full Text] [Related]
3. The uptake of glucose and gluconate by Pseudomonas putida. Vicente M, Pedro MA, Torrontegui G, Cánovas JL. Mol Cell Biochem; 1975 Apr 30; 7(1):59-64. PubMed ID: 1134500 [Abstract] [Full Text] [Related]
4. Glucolysis in Pseudomonas putida: physiological role of alternative routes from the analysis of defective mutants. Vicente M, Cánovas JL. J Bacteriol; 1973 Nov 30; 116(2):908-14. PubMed ID: 4745434 [Abstract] [Full Text] [Related]
5. Catabolism of D-fructose and D-ribose by Pseudomonas doudoroffii. I. Physiological studies and mutant analysis. Baumann P, Baumann L. Arch Microbiol; 1975 Nov 07; 105(3):225-40. PubMed ID: 127561 [Abstract] [Full Text] [Related]
6. D-glucose and D-gluconate transport in vesicles from Pseudomonas putida. Al-Jobore A, Moses G, Taylor NF. Can J Biochem; 1980 Dec 07; 58(12):1397-404. PubMed ID: 7248836 [Abstract] [Full Text] [Related]
7. Genetic evidence that catabolites of the Entner-Doudoroff pathway signal C source repression of the sigma54 Pu promoter of Pseudomonas putida. Velázquez F, di Bartolo I, de Lorenzo V. J Bacteriol; 2004 Dec 07; 186(24):8267-75. PubMed ID: 15576775 [Abstract] [Full Text] [Related]
8. Transport of glucose, gluconate, and methyl alpha-D-glucoside by Pseudomonas aeruginosa. Guymon LF, Eagon RG. J Bacteriol; 1974 Mar 07; 117(3):1261-9. PubMed ID: 4205195 [Abstract] [Full Text] [Related]
9. Bypasses in intracellular glucose metabolism in iron-limited Pseudomonas putida. Sasnow SS, Wei H, Aristilde L. Microbiologyopen; 2016 Feb 07; 5(1):3-20. PubMed ID: 26377487 [Abstract] [Full Text] [Related]
10. [Effect of the medium composition on the accumulation of 2-keto-D-gluconic acid in Pseudomonas putida cultures]. Voloshenko MI, Disler EN, Komarova GV. Prikl Biokhim Mikrobiol; 1987 Feb 07; 23(2):199-203. PubMed ID: 3575266 [Abstract] [Full Text] [Related]
14. The active transport of 2-keto-D-gluconate in vesicles prepared from Pseudomonas purida. Agbanyo F, Taylor NF. Biochem J; 1985 May 15; 228(1):257-62. PubMed ID: 4004814 [Abstract] [Full Text] [Related]
15. Pathways of D-fructose catabolism in species of Pseudomonas. Sawyer MH, Baumann P, Baumann L, Berman SM, Cánovas JL, Berman RH. Arch Microbiol; 1977 Feb 04; 112(1):49-55. PubMed ID: 139135 [Abstract] [Full Text] [Related]
16. Mannitol and fructose catabolic pathways of Pseudomonas aeruginosa carbohydrate-negative mutants and pleiotropic effects of certain enzyme deficiencies. Phibbs PV, McCowen SM, Feary TW, Blevins WT. J Bacteriol; 1978 Feb 04; 133(2):717-28. PubMed ID: 146701 [Abstract] [Full Text] [Related]
17. The regulation of transport of glucose, gluconate and 2-oxogluconate and of glucose catabolism in Pseudomonas aeruginosa. Whiting PH, Midgley M, Dawes EA. Biochem J; 1976 Mar 15; 154(3):659-68. PubMed ID: 821472 [Abstract] [Full Text] [Related]
18. The utilization of 2-ketogluconate by Hydrogenomonas eutropha H 16. Nandadasa HG, Andreesen M, Schlegel HG. Arch Microbiol; 1974 Mar 15; 99(1):15-23. PubMed ID: 4212460 [No Abstract] [Full Text] [Related]