These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


379 related items for PubMed ID: 11160426

  • 1. Quantitative relationship between transmitter release and calcium current at the calyx of held synapse.
    Sakaba T, Neher E.
    J Neurosci; 2001 Jan 15; 21(2):462-76. PubMed ID: 11160426
    [Abstract] [Full Text] [Related]

  • 2. Combining deconvolution and noise analysis for the estimation of transmitter release rates at the calyx of held.
    Neher E, Sakaba T.
    J Neurosci; 2001 Jan 15; 21(2):444-61. PubMed ID: 11160425
    [Abstract] [Full Text] [Related]

  • 3. Presynaptic Ca2+ requirements and developmental regulation of posttetanic potentiation at the calyx of Held.
    Korogod N, Lou X, Schneggenburger R.
    J Neurosci; 2005 May 25; 25(21):5127-37. PubMed ID: 15917453
    [Abstract] [Full Text] [Related]

  • 4. Estimating transmitter release rates from postsynaptic current fluctuations.
    Neher E, Sakaba T.
    J Neurosci; 2001 Dec 15; 21(24):9638-54. PubMed ID: 11739574
    [Abstract] [Full Text] [Related]

  • 5. Developmental transformation of the release modality at the calyx of Held synapse.
    Fedchyshyn MJ, Wang LY.
    J Neurosci; 2005 Apr 20; 25(16):4131-40. PubMed ID: 15843616
    [Abstract] [Full Text] [Related]

  • 6. Developmental increase in vesicular glutamate content does not cause saturation of AMPA receptors at the calyx of Held synapse.
    Yamashita T, Ishikawa T, Takahashi T.
    J Neurosci; 2003 May 01; 23(9):3633-8. PubMed ID: 12736334
    [Abstract] [Full Text] [Related]

  • 7. The dynamic range for gain control of NMDA receptor-mediated synaptic transmission at a single synapse.
    Wang LY.
    J Neurosci; 2000 Dec 15; 20(24):RC115. PubMed ID: 11125014
    [Abstract] [Full Text] [Related]

  • 8. Action potential bursts enhance transmitter release at a giant central synapse.
    Zhang B, Sun L, Yang YM, Huang HP, Zhu FP, Wang L, Zhang XY, Guo S, Zuo PL, Zhang CX, Ding JP, Wang LY, Zhou Z.
    J Physiol; 2011 May 01; 589(Pt 9):2213-27. PubMed ID: 21486773
    [Abstract] [Full Text] [Related]

  • 9. Distinguishing between presynaptic and postsynaptic mechanisms of short-term depression during action potential trains.
    Wong AY, Graham BP, Billups B, Forsythe ID.
    J Neurosci; 2003 Jun 15; 23(12):4868-77. PubMed ID: 12832509
    [Abstract] [Full Text] [Related]

  • 10. Estimation of quantal size and number of functional active zones at the calyx of Held synapse by nonstationary EPSC variance analysis.
    Meyer AC, Neher E, Schneggenburger R.
    J Neurosci; 2001 Oct 15; 21(20):7889-900. PubMed ID: 11588162
    [Abstract] [Full Text] [Related]

  • 11. Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses.
    Billups B, Forsythe ID.
    J Neurosci; 2002 Jul 15; 22(14):5840-7. PubMed ID: 12122046
    [Abstract] [Full Text] [Related]

  • 12. Minimizing synaptic depression by control of release probability.
    Brenowitz S, Trussell LO.
    J Neurosci; 2001 Mar 15; 21(6):1857-67. PubMed ID: 11245670
    [Abstract] [Full Text] [Related]

  • 13. Control of synaptic strength and timing by the release-site Ca2+ signal.
    Bollmann JH, Sakmann B.
    Nat Neurosci; 2005 Apr 15; 8(4):426-34. PubMed ID: 15750590
    [Abstract] [Full Text] [Related]

  • 14. Synaptic vesicles in mature calyx of Held synapses sense higher nanodomain calcium concentrations during action potential-evoked glutamate release.
    Wang LY, Neher E, Taschenberger H.
    J Neurosci; 2008 Dec 31; 28(53):14450-8. PubMed ID: 19118179
    [Abstract] [Full Text] [Related]

  • 15. Vesicular glutamate filling and AMPA receptor occupancy at the calyx of Held synapse of immature rats.
    Yamashita T, Kanda T, Eguchi K, Takahashi T.
    J Physiol; 2009 May 15; 587(Pt 10):2327-39. PubMed ID: 19332485
    [Abstract] [Full Text] [Related]

  • 16. Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse.
    Sakaba T, Neher E.
    Neuron; 2001 Dec 20; 32(6):1119-31. PubMed ID: 11754842
    [Abstract] [Full Text] [Related]

  • 17. Ca2+ channel to synaptic vesicle distance accounts for the readily releasable pool kinetics at a functionally mature auditory synapse.
    Chen Z, Das B, Nakamura Y, DiGregorio DA, Young SM.
    J Neurosci; 2015 Feb 04; 35(5):2083-100. PubMed ID: 25653365
    [Abstract] [Full Text] [Related]

  • 18. Modulation of transmitter release by presynaptic resting potential and background calcium levels.
    Awatramani GB, Price GD, Trussell LO.
    Neuron; 2005 Oct 06; 48(1):109-21. PubMed ID: 16202712
    [Abstract] [Full Text] [Related]

  • 19. Sr2+ has low efficiency in regulating spontaneous release at the Calyx of Held synapses.
    Zhang S, Wang X, Wang X, Shen X, Sun J, Hu X, Chen P.
    Synapse; 2017 Nov 06; 71(11):. PubMed ID: 28857293
    [Abstract] [Full Text] [Related]

  • 20. A mechanism intrinsic to the vesicle fusion machinery determines fast and slow transmitter release at a large CNS synapse.
    Wölfel M, Lou X, Schneggenburger R.
    J Neurosci; 2007 Mar 21; 27(12):3198-210. PubMed ID: 17376981
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.