These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
110 related items for PubMed ID: 11165295
1. 2D calculation method based on composite beam theory for the determination of local homogenised stiffnesses of long bones. Estivalèzes E, Couteau B, Darmana R. J Biomech; 2001 Feb; 34(2):277-83. PubMed ID: 11165295 [Abstract] [Full Text] [Related]
2. Shape and function of the diaphysis of the human tibia. Cristofolini L, Angeli E, Juszczyk JM, Juszczyk MM. J Biomech; 2013 Jul 26; 46(11):1882-92. PubMed ID: 23726289 [Abstract] [Full Text] [Related]
3. In vivo determination of homogenised mechanical characteristics of human tibia: application to the study of tibial torsion in vivo. Limbert G, Estivalèzes E, Hobatho MC, Baunin C, Cahuzac JP. Clin Biomech (Bristol); 1998 Oct 26; 13(7):473-479. PubMed ID: 11415823 [Abstract] [Full Text] [Related]
4. CAD method for three-dimensional model of the tibia bone and study of stresses using the finite element method. Tarniţă D, Popa D, Tarniţă DN, Grecu D. Rom J Morphol Embryol; 2006 Oct 26; 47(2):181-6. PubMed ID: 17106528 [Abstract] [Full Text] [Related]
5. Experimental validation of a finite element model of a human cadaveric tibia. Gray HA, Taddei F, Zavatsky AB, Cristofolini L, Gill HS. J Biomech Eng; 2008 Jun 26; 130(3):031016. PubMed ID: 18532865 [Abstract] [Full Text] [Related]
6. An integrative modeling approach for the efficient estimation of cross sectional tibial stresses during locomotion. Derrick TR, Edwards WB, Fellin RE, Seay JF. J Biomech; 2016 Feb 08; 49(3):429-35. PubMed ID: 26803338 [Abstract] [Full Text] [Related]
7. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M, Zdero R, Schemitsch EH, Zalzal P. J Biomech Eng; 2007 Feb 08; 129(1):12-9. PubMed ID: 17227093 [Abstract] [Full Text] [Related]
8. The mechanical resonances of a human tibia: part I--in vitro. Collier RJ, Nadav O, Thomas TG. J Biomech; 1982 Feb 08; 15(8):545-53. PubMed ID: 7142222 [Abstract] [Full Text] [Related]
9. Area moments of inertia as a measure of the mandible stiffness of the implant patient. Hansson S, Ekestubbe A. Clin Oral Implants Res; 2004 Aug 08; 15(4):450-8. PubMed ID: 15248880 [Abstract] [Full Text] [Related]
10. The mechanical strength of bones in torsion application to human tibiae. Cordey J, Grütter R, Johner R. Injury; 2000 Sep 08; 31 Suppl 3():C68-71. PubMed ID: 11052385 [Abstract] [Full Text] [Related]
11. Mechanical validation of whole bone composite tibia models. Cristofolini L, Viceconti M. J Biomech; 2000 Mar 08; 33(3):279-88. PubMed ID: 10673111 [Abstract] [Full Text] [Related]
12. 3D patient-specific model of the tibia from CT for orthopedic use. González-Carbonell RA, Ortiz-Prado A, Jacobo-Armendáriz VH, Cisneros-Hidalgo YA, Alpízar-Aguirre A. J Orthop; 2015 Mar 08; 12(1):11-6. PubMed ID: 25829755 [Abstract] [Full Text] [Related]
13. External fixator configurations in tibia fractures: 1D optimization and 3D analysis comparison. Roseiro LM, Neto MA, Amaro A, Leal RP, Samarra MC. Comput Methods Programs Biomed; 2014 Mar 08; 113(1):360-70. PubMed ID: 24176414 [Abstract] [Full Text] [Related]
14. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study. Venäläinen MS, Mononen ME, Jurvelin JS, Töyräs J, Virén T, Korhonen RK. J Biomech Eng; 2014 Dec 08; 136(12):121005. PubMed ID: 25322202 [Abstract] [Full Text] [Related]
15. Mechanical evaluation of large-size fourth-generation composite femur and tibia models. Gardner MP, Chong AC, Pollock AG, Wooley PH. Ann Biomed Eng; 2010 Mar 08; 38(3):613-20. PubMed ID: 20049637 [Abstract] [Full Text] [Related]
16. Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia. Nazemi SM, Kalajahi SMH, Cooper DML, Kontulainen SA, Holdsworth DW, Masri BA, Wilson DR, Johnston JD. J Biomech; 2017 Jul 05; 59():101-108. PubMed ID: 28601243 [Abstract] [Full Text] [Related]
17. Effect of activity and age on long bones using a new densitometric technique. Cleek TM, Whalen RT. Med Sci Sports Exerc; 2005 Oct 05; 37(10):1806-13. PubMed ID: 16260985 [Abstract] [Full Text] [Related]
18. Parameter study for the finite element modelling of long bones with computed-tomography-imaging-based stiffness distribution. Wullschleger L, Weisse B, Blaser D, Fürst AE. Proc Inst Mech Eng H; 2010 Oct 05; 224(9):1095-107. PubMed ID: 21053774 [Abstract] [Full Text] [Related]
20. The effects of geometric and threshold definitions on cortical bone metrics assessed by in vivo high-resolution peripheral quantitative computed tomography. Davis KA, Burghardt AJ, Link TM, Majumdar S. Calcif Tissue Int; 2007 Nov 05; 81(5):364-71. PubMed ID: 17952361 [Abstract] [Full Text] [Related] Page: [Next] [New Search]