These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


582 related items for PubMed ID: 11170204

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Peptide models provide evidence for significant structure in the denatured state of a rapidly folding protein: the villin headpiece subdomain.
    Tang Y, Rigotti DJ, Fairman R, Raleigh DP.
    Biochemistry; 2004 Mar 23; 43(11):3264-72. PubMed ID: 15023077
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Dynamic NMR line-shape analysis demonstrates that the villin headpiece subdomain folds on the microsecond time scale.
    Wang M, Tang Y, Sato S, Vugmeyster L, McKnight CJ, Raleigh DP.
    J Am Chem Soc; 2003 May 21; 125(20):6032-3. PubMed ID: 12785814
    [Abstract] [Full Text] [Related]

  • 8. NMR characterization of a peptide model provides evidence for significant structure in the unfolded state of the villin headpiece helical subdomain.
    Tang Y, Goger MJ, Raleigh DP.
    Biochemistry; 2006 Jun 06; 45(22):6940-6. PubMed ID: 16734429
    [Abstract] [Full Text] [Related]

  • 9. Using massively parallel simulation and Markovian models to study protein folding: examining the dynamics of the villin headpiece.
    Jayachandran G, Vishal V, Pande VS.
    J Chem Phys; 2006 Apr 28; 124(16):164902. PubMed ID: 16674165
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Folding of the villin headpiece subdomain from random structures. Analysis of the charge distribution as a function of pH.
    Ripoll DR, Vila JA, Scheraga HA.
    J Mol Biol; 2004 Jun 11; 339(4):915-25. PubMed ID: 15165859
    [Abstract] [Full Text] [Related]

  • 12. Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing.
    Pande VS, Baker I, Chapman J, Elmer SP, Khaliq S, Larson SM, Rhee YM, Shirts MR, Snow CD, Sorin EJ, Zagrovic B.
    Biopolymers; 2003 Jan 11; 68(1):91-109. PubMed ID: 12579582
    [Abstract] [Full Text] [Related]

  • 13. Sampling small-scale and large-scale conformational changes in proteins and molecular complexes.
    Yun MR, Mousseau N, Derreumaux P.
    J Chem Phys; 2007 Mar 14; 126(10):105101. PubMed ID: 17362087
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Comparing atomistic simulation data with the NMR experiment: how much can NOEs actually tell us?
    Zagrovic B, van Gunsteren WF.
    Proteins; 2006 Apr 01; 63(1):210-8. PubMed ID: 16425239
    [Abstract] [Full Text] [Related]

  • 18. Conformational dynamics of cytochrome c: correlation to hydrogen exchange.
    García AE, Hummer G.
    Proteins; 1999 Aug 01; 36(2):175-91. PubMed ID: 10398365
    [Abstract] [Full Text] [Related]

  • 19. Global optimization and folding pathways of selected alpha-helical proteins.
    Carr JM, Wales DJ.
    J Chem Phys; 2005 Dec 15; 123(23):234901. PubMed ID: 16392943
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 30.