These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
121 related items for PubMed ID: 11172732
1. Structure-activity investigation of the inhibition of 3-hydroxypyridin-4-ones on mammalian tyrosine hydroxylase. Liu ZD, Lockwood M, Rose S, Theobald AE, Hider RC. Biochem Pharmacol; 2001 Feb 01; 61(3):285-90. PubMed ID: 11172732 [Abstract] [Full Text] [Related]
2. Design, synthesis, and evaluation of novel 2-substituted 3-hydroxypyridin-4-ones: structure-activity investigation of metalloenzyme inhibition by iron chelators. Liu ZD, Kayyali R, Hider RC, Porter JB, Theobald AE. J Med Chem; 2002 Jan 31; 45(3):631-9. PubMed ID: 11806714 [Abstract] [Full Text] [Related]
3. Synthesis, physicochemical characterization, and biological evaluation of 2-(1'-hydroxyalkyl)-3-hydroxypyridin-4-ones: novel iron chelators with enhanced pFe(3+) values. Liu ZD, Khodr HH, Liu DY, Lu SL, Hider RC. J Med Chem; 1999 Nov 18; 42(23):4814-23. PubMed ID: 10579844 [Abstract] [Full Text] [Related]
4. Inhibition of catechol-O-methyltransferase (COMT) as well as tyrosine and tryptophan hydroxylase by the orally active iron chelator, 1,2-dimethyl-3-hydroxypyridin-4-one (L1, CP20), in rat brain in vivo. Waldmeier PC, Buchle AM, Steulet AF. Biochem Pharmacol; 1993 Jun 22; 45(12):2417-24. PubMed ID: 7687131 [Abstract] [Full Text] [Related]
5. Structure-function investigation of the interaction of 1- and 2-substituted 3-hydroxypyridin-4-ones with 5-lipoxygenase and ribonucleotide reductase. Kayyali R, Porter JB, Liu ZD, Davies NA, Nugent JH, Cooper CE, Hider RC. J Biol Chem; 2001 Dec 28; 276(52):48814-22. PubMed ID: 11602611 [Abstract] [Full Text] [Related]
6. Hexadentate 3-hydroxypyridin-4-ones with high iron(III) affinity: design, synthesis and inhibition on methicillin resistant Staphylococcus aureus and Pseudomonas strains. Zhou YJ, Liu MS, Osamah AR, Kong XL, Alsam S, Battah S, Xie YY, Hider RC, Zhou T. Eur J Med Chem; 2015 Apr 13; 94():8-21. PubMed ID: 25747496 [Abstract] [Full Text] [Related]
7. Synthesis and physicochemical assessment of novel 2-substituted 3-hydroxypyridin-4-ones, novel iron chelators. Moridani MY, Tilbrook GS, Khodr HH, Hider RC. J Pharm Pharmacol; 2002 Mar 13; 54(3):349-64. PubMed ID: 11902801 [Abstract] [Full Text] [Related]
8. Design, synthesis and evaluation of N-basic substituted 3-hydroxypyridin-4-ones: orally active iron chelators with lysosomotrophic potential. Liu ZD, Khodr HH, Lu SL, Hider RC. J Pharm Pharmacol; 2000 Mar 13; 52(3):263-72. PubMed ID: 10757413 [Abstract] [Full Text] [Related]
9. Synthesis of 2-amido-3-hydroxypyridin-4(1H)-ones: novel iron chelators with enhanced pFe3+ values. Liu ZD, Piyamongkol S, Liu DY, Khodr HH, Lu SL, Hider RC. Bioorg Med Chem; 2001 Mar 13; 9(3):563-73. PubMed ID: 11310590 [Abstract] [Full Text] [Related]
10. Iron mobilization from hepatocyte monolayer cultures by chelators: the importance of membrane permeability and the iron-binding constant. Porter JB, Gyparaki M, Burke LC, Huehns ER, Sarpong P, Saez V, Hider RC. Blood; 1988 Nov 13; 72(5):1497-503. PubMed ID: 3179437 [Abstract] [Full Text] [Related]
11. Basic 3-hydroxypyridin-4-ones: potential antimalarial agents. Dehkordi LS, Liu ZD, Hider RC. Eur J Med Chem; 2008 May 13; 43(5):1035-47. PubMed ID: 17869385 [Abstract] [Full Text] [Related]
12. Synthesis and in-vitro antimicrobial evaluation of a high-affinity iron chelator in combination with chloramphenicol. Zhu CF, Qiu DH, Kong XL, Hider RC, Zhou T. J Pharm Pharmacol; 2013 Apr 13; 65(4):512-20. PubMed ID: 23488779 [Abstract] [Full Text] [Related]
13. Synthesis, physicochemical properties, and evaluation of N-substituted-2-alkyl-3-hydroxy-4(1H)-pyridinones. Rai BL, Dekhordi LS, Khodr H, Jin Y, Liu Z, Hider RC. J Med Chem; 1998 Aug 27; 41(18):3347-59. PubMed ID: 9719587 [Abstract] [Full Text] [Related]
14. Design and synthesis of fluorinated iron chelators for metabolic study and brain uptake. Ma Y, Roy S, Kong X, Chen Y, Liu D, Hider RC. J Med Chem; 2012 Mar 08; 55(5):2185-95. PubMed ID: 22339047 [Abstract] [Full Text] [Related]
15. Identification of the di-pyridyl ketone isonicotinoyl hydrazone (PKIH) analogues as potent iron chelators and anti-tumour agents. Becker EM, Lovejoy DB, Greer JM, Watts R, Richardson DR. Br J Pharmacol; 2003 Mar 08; 138(5):819-30. PubMed ID: 12642383 [Abstract] [Full Text] [Related]
16. Iron mobilization from myocardial cells by 3-hydroxypyridin-4-one chelators: studies in rat heart cells in culture. Hershko C, Link G, Pinson A, Peter HH, Dobbin P, Hider RC. Blood; 1991 May 01; 77(9):2049-53. PubMed ID: 2018841 [Abstract] [Full Text] [Related]
17. Hydrolyzable Tannins Are Iron Chelators That Inhibit DNA Repair Enzyme ALKBH2. Chen F, Tang Q, Ma H, Bian K, Seeram NP, Li D. Chem Res Toxicol; 2019 Jun 17; 32(6):1082-1086. PubMed ID: 31088072 [Abstract] [Full Text] [Related]
19. Hydrolytic and metabolic characteristics of the esters of 1-(3'-hydroxypropyl)-2-methyl-3-hydroxypyridin-4-one (CP41), potentially useful iron chelators. Liu DY, Liu ZD, Lu SL, Hider RC. Pharmacol Toxicol; 2000 May 17; 86(5):228-33. PubMed ID: 10862505 [Abstract] [Full Text] [Related]
20. Synthesis, physical-chemical characterisation and biological evaluation of novel 2-amido-3-hydroxypyridin-4(1H)-ones: Iron chelators with the potential for treating Alzheimer's disease. Gaeta A, Molina-Holgado F, Kong XL, Salvage S, Fakih S, Francis PT, Williams RJ, Hider RC. Bioorg Med Chem; 2011 Feb 01; 19(3):1285-97. PubMed ID: 21236688 [Abstract] [Full Text] [Related] Page: [Next] [New Search]