These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 11172772
1. Testosterone protects cerebellar granule cells from oxidative stress-induced cell death through a receptor mediated mechanism. Ahlbom E, Prins GS, Ceccatelli S. Brain Res; 2001 Feb 23; 892(2):255-62. PubMed ID: 11172772 [Abstract] [Full Text] [Related]
2. Androgen treatment of neonatal rats decreases susceptibility of cerebellar granule neurons to oxidative stress in vitro. Ahlbom E, Grandison L, Bonfoco E, Zhivotovsky B, Ceccatelli S. Eur J Neurosci; 1999 Apr 23; 11(4):1285-91. PubMed ID: 10103123 [Abstract] [Full Text] [Related]
3. Effect of dihydrotestosterone on hydrogen peroxide-induced apoptosis of mouse embryonic stem cells. Lee SH, Heo JS, Lee MY, Han HJ. J Cell Physiol; 2008 Jul 23; 216(1):269-75. PubMed ID: 18330893 [Abstract] [Full Text] [Related]
4. Hydrogen peroxide-induced oxidative damage and apoptosis in cerebellar granule cells: protection by Ginkgo biloba extract. Wei T, Ni Y, Hou J, Chen C, Zhao B, Xin W. Pharmacol Res; 2000 Apr 23; 41(4):427-33. PubMed ID: 10704267 [Abstract] [Full Text] [Related]
5. Cell death in rat cerebellar granule neurons induced by hydrogen peroxide in vitro: mechanisms and protection by adenosine receptor ligands. Fatokun AA, Stone TW, Smith RA. Brain Res; 2007 Feb 09; 1132(1):193-202. PubMed ID: 17188658 [Abstract] [Full Text] [Related]
6. Testosterone induces neuroprotection from oxidative stress. Effects on catalase activity and 3-nitro-L-tyrosine incorporation into alpha-tubulin in a mouse neuroblastoma cell line. Chisu V, Manca P, Lepore G, Gadau S, Zedda M, Farina V. Arch Ital Biol; 2006 May 09; 144(2):63-73. PubMed ID: 16642786 [Abstract] [Full Text] [Related]
7. Radical scavenging compound J 811 inhibits hydrogen peroxide-induced death of cerebellar granule cells. Götz ME, Ahlbom E, Zhivotovsky B, Blum-Degen D, Oettel M, Römer W, Riederer P, Orrenius S, Ceccatelli S. J Neurosci Res; 1999 May 15; 56(4):420-6. PubMed ID: 10340749 [Abstract] [Full Text] [Related]
8. Testosterone protects cardiac myocytes from superoxide injury via NF-κB signalling pathways. Xiao FY, Nheu L, Komesaroff P, Ling S. Life Sci; 2015 Jul 15; 133():45-52. PubMed ID: 26032259 [Abstract] [Full Text] [Related]
9. Effect of a nonsteroidal antiandrogen, flutamide, on androgen receptor dynamics and ornithine decarboxylase gene expression in mouse kidney. Kontula KK, Seppänen PJ, van Duyne P, Bardin CW, Jänne OA. Endocrinology; 1985 Jan 15; 116(1):226-33. PubMed ID: 3964747 [Abstract] [Full Text] [Related]
10. Activational action of testosterone on androgen receptors protects males preventing temporomandibular joint pain. Fanton LE, Macedo CG, Torres-Chávez KE, Fischer L, Tambeli CH. Pharmacol Biochem Behav; 2017 Jan 15; 152():30-35. PubMed ID: 27461546 [Abstract] [Full Text] [Related]
11. Investigation of a mechanism for Leydig cell tumorigenesis by linuron in rats. Cook JC, Mullin LS, Frame SR, Biegel LB. Toxicol Appl Pharmacol; 1993 Apr 15; 119(2):195-204. PubMed ID: 8480329 [Abstract] [Full Text] [Related]
12. Testosterone-mediated neuroprotection through the androgen receptor in human primary neurons. Hammond J, Le Q, Goodyer C, Gelfand M, Trifiro M, LeBlanc A. J Neurochem; 2001 Jun 15; 77(5):1319-26. PubMed ID: 11389183 [Abstract] [Full Text] [Related]
13. Inhibition of oxidative-stress-induced platelet aggregation by androgen at physiological levels via its receptor is associated with the reduction of thromboxane A2 release from platelets. Li S, Li X, Li J, Deng X, Li Y. Steroids; 2007 Nov 15; 72(13):875-80. PubMed ID: 17825336 [Abstract] [Full Text] [Related]
14. Does 2-hydroxyflutamide inhibit apoptosis in porcine granulosa cells? - An in vitro study. Duda M, Durlej M, Knet M, Knapczyk-Stwora K, Tabarowski Z, Slomczynska M. J Reprod Dev; 2012 Nov 15; 58(4):438-44. PubMed ID: 22522230 [Abstract] [Full Text] [Related]
15. Failure of glycine site NMDA receptor antagonists to protect against L-2-chloropropionic acid-induced neurotoxicity highlights the uniqueness of cerebellar NMDA receptors. Widdowson PS, Gyte AJ, Upton R, Wyatt I. Brain Res; 1996 Nov 04; 738(2):236-42. PubMed ID: 8955518 [Abstract] [Full Text] [Related]
16. Role of oxidative stress in the apoptotic cell death of cultured cerebellar granule neurons. Valencia A, Morán J. J Neurosci Res; 2001 May 01; 64(3):284-97. PubMed ID: 11319773 [Abstract] [Full Text] [Related]
17. Up-regulation of hepatic alpha-2-HS-glycoprotein transcription by testosterone via androgen receptor activation. Voelkl J, Pakladok T, Lin Y, Viereck R, Lebedeva A, Kukuk D, Pichler BJ, Alesutan I, Lang F. Cell Physiol Biochem; 2014 May 01; 33(6):1911-20. PubMed ID: 25011927 [Abstract] [Full Text] [Related]
18. Neuroprotective effects of testosterone metabolites and dependency on receptor action on the morphology of somatic motoneurons following the death of neighboring motoneurons. Cai Y, Chew C, Muñoz F, Sengelaub DR. Dev Neurobiol; 2017 Jun 01; 77(6):691-707. PubMed ID: 27569375 [Abstract] [Full Text] [Related]
19. Testosterone exerts antiapoptotic effects against H2O2 in C2C12 skeletal muscle cells through the apoptotic intrinsic pathway. Pronsato L, Boland R, Milanesi L. J Endocrinol; 2012 Mar 01; 212(3):371-81. PubMed ID: 22219300 [Abstract] [Full Text] [Related]