These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
119 related items for PubMed ID: 11181596
1. Pro- and macroglycogenolysis during repeated exercise: roles of glycogen content and phosphorylase activation. Shearer J, Marchand I, Tarnopolsky MA, Dyck DJ, Graham TE. J Appl Physiol (1985); 2001 Mar; 90(3):880-8. PubMed ID: 11181596 [Abstract] [Full Text] [Related]
2. Pro- and macroglycogenolysis: relationship with exercise intensity and duration. Graham TE, Adamo KB, Shearer J, Marchand I, Saltin B. J Appl Physiol (1985); 2001 Mar; 90(3):873-9. PubMed ID: 11181595 [Abstract] [Full Text] [Related]
3. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Parolin ML, Chesley A, Matsos MP, Spriet LL, Jones NL, Heigenhauser GJ. Am J Physiol; 1999 Nov; 277(5):E890-900. PubMed ID: 10567017 [Abstract] [Full Text] [Related]
4. Dietary carbohydrate and postexercise synthesis of proglycogen and macroglycogen in human skeletal muscle. Adamo KB, Tarnopolsky MA, Graham TE. Am J Physiol; 1998 Aug; 275(2):E229-34. PubMed ID: 9688623 [Abstract] [Full Text] [Related]
5. Glycogenin activity in human skeletal muscle is proportional to muscle glycogen concentration. Shearer J, Marchand I, Sathasivam P, Tarnopolsky MA, Graham TE. Am J Physiol Endocrinol Metab; 2000 Jan; 278(1):E177-80. PubMed ID: 10644553 [Abstract] [Full Text] [Related]
6. Glycogenin activity and mRNA expression in response to volitional exhaustion in human skeletal muscle. Shearer J, Graham TE, Battram DS, Robinson DL, Richter EA, Wilson RJ, Bakovic M. J Appl Physiol (1985); 2005 Sep; 99(3):957-62. PubMed ID: 15860684 [Abstract] [Full Text] [Related]
7. Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. Hollidge-Horvat MG, Parolin ML, Wong D, Jones NL, Heigenhauser GJ. Am J Physiol Endocrinol Metab; 2000 Feb; 278(2):E316-29. PubMed ID: 10662717 [Abstract] [Full Text] [Related]
8. Regulation of skeletal muscle glycogen phosphorylase and PDH at varying exercise power outputs. Howlett RA, Parolin ML, Dyck DJ, Hultman E, Jones NL, Heigenhauser GJ, Spriet LL. Am J Physiol; 1998 Aug; 275(2):R418-25. PubMed ID: 9688676 [Abstract] [Full Text] [Related]
9. Influence of preexercise muscle glycogen content on transcriptional activity of metabolic and myogenic genes in well-trained humans. Churchley EG, Coffey VG, Pedersen DJ, Shield A, Carey KA, Cameron-Smith D, Hawley JA. J Appl Physiol (1985); 2007 Apr; 102(4):1604-11. PubMed ID: 17218424 [Abstract] [Full Text] [Related]
10. Regulation of fuel metabolism by preexercise muscle glycogen content and exercise intensity. Arkinstall MJ, Bruce CR, Clark SA, Rickards CA, Burke LM, Hawley JA. J Appl Physiol (1985); 2004 Dec; 97(6):2275-83. PubMed ID: 15286047 [Abstract] [Full Text] [Related]
11. Effects of PDH activation by dichloroacetate in human skeletal muscle during exercise in hypoxia. Parolin ML, Spriet LL, Hultman E, Matsos MP, Hollidge-Horvat MG, Jones NL, Heigenhauser GJ. Am J Physiol Endocrinol Metab; 2000 Oct; 279(4):E752-61. PubMed ID: 11001755 [Abstract] [Full Text] [Related]
12. Role of glycogen in control of glycolysis and IMP formation in human muscle during exercise. Spencer MK, Katz A. Am J Physiol; 1991 Jun; 260(6 Pt 1):E859-64. PubMed ID: 2058662 [Abstract] [Full Text] [Related]
13. Muscle glycogen synthesis in recovery from intense exercise in humans. Bangsbo J, Madsen K, Kiens B, Richter EA. Am J Physiol; 1997 Aug; 273(2 Pt 1):E416-24. PubMed ID: 9277396 [Abstract] [Full Text] [Related]
14. Pro- and macroglycogenolysis in skeletal muscle during maximal treadmill exercise. Bröjer J, Jonasson R, Schuback K, Essén-Gustavsson B. Equine Vet J Suppl; 2002 Sep; (34):205-8. PubMed ID: 12405687 [Abstract] [Full Text] [Related]
15. Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. Stellingwerff T, Spriet LL, Watt MJ, Kimber NE, Hargreaves M, Hawley JA, Burke LM. Am J Physiol Endocrinol Metab; 2006 Feb; 290(2):E380-8. PubMed ID: 16188909 [Abstract] [Full Text] [Related]
16. Regulation of glycogen phosphorylase and PDH during exercise in human skeletal muscle during hypoxia. Parolin ML, Spriet LL, Hultman E, Hollidge-Horvat MG, Jones NL, Heigenhauser GJ. Am J Physiol Endocrinol Metab; 2000 Mar; 278(3):E522-34. PubMed ID: 10710508 [Abstract] [Full Text] [Related]
17. Regulation of muscle glycogen phosphorylase activity during intense aerobic cycling with elevated FFA. Dyck DJ, Peters SJ, Wendling PS, Chesley A, Hultman E, Spriet LL. Am J Physiol; 1996 Jan; 270(1 Pt 1):E116-25. PubMed ID: 8772483 [Abstract] [Full Text] [Related]
19. Influence of muscle glycogen on glycogenolysis and glucose uptake during exercise in humans. Hargreaves M, McConell G, Proietto J. J Appl Physiol (1985); 1995 Jan; 78(1):288-92. PubMed ID: 7713825 [Abstract] [Full Text] [Related]
20. Low glycogen and branched-chain amino acid ingestion do not impair anaplerosis during exercise in humans. Gibala MJ, Lozej M, Tarnopolsky MA, McLean C, Graham TE. J Appl Physiol (1985); 1999 Nov; 87(5):1662-7. PubMed ID: 10562606 [Abstract] [Full Text] [Related] Page: [Next] [New Search]