These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


405 related items for PubMed ID: 11201817

  • 1. Volumetric and dimensional analysis of the guinea pig inner ear.
    Shinomori Y, Spack DS, Jones DD, Kimura RS.
    Ann Otol Rhinol Laryngol; 2001 Jan; 110(1):91-8. PubMed ID: 11201817
    [Abstract] [Full Text] [Related]

  • 2. Immunolocalization of Na+, K(+)-ATPase, Ca(++)-ATPase, calcium-binding proteins, and carbonic anhydrase in the guinea pig inner ear.
    Ichimiya I, Adams JC, Kimura RS.
    Acta Otolaryngol; 1994 Mar; 114(2):167-76. PubMed ID: 8203199
    [Abstract] [Full Text] [Related]

  • 3. Morphometric comparison of endolymphatic and perilymphatic spaces in human temporal bones.
    Igarashi M, Ohashi K, Ishii M.
    Acta Otolaryngol; 1986 Mar; 101(3-4):161-4. PubMed ID: 3518332
    [Abstract] [Full Text] [Related]

  • 4. Inner ear fluid volumes and the resolving power of magnetic resonance imaging: can it differentiate endolymphatic structures?
    Buckingham RA, Valvassori GE.
    Ann Otol Rhinol Laryngol; 2001 Feb; 110(2):113-7. PubMed ID: 11219516
    [Abstract] [Full Text] [Related]

  • 5. Immunohistochemical localization of the epithelial sodium channel in the rat inner ear.
    Zhong SX, Liu ZH.
    Hear Res; 2004 Jul; 193(1-2):1-8. PubMed ID: 15219314
    [Abstract] [Full Text] [Related]

  • 6. [Expression and its significance of aquaporins in normal guinea pig inner ears].
    Han H, Zhang L, Gu F.
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 2005 Oct; 19(19):883-5. PubMed ID: 16419959
    [Abstract] [Full Text] [Related]

  • 7. Distribution of beta-tubulin in guinea pig inner ear.
    Du X, Yoo T, Mora R.
    ORL J Otorhinolaryngol Relat Spec; 2003 Oct; 65(1):7-16. PubMed ID: 12624500
    [Abstract] [Full Text] [Related]

  • 8. Histochemical localization of carbonic anhydrase in the inner ear.
    Lim DJ, Karabinas C, Trune DR.
    Am J Otolaryngol; 1983 Oct; 4(1):33-42. PubMed ID: 6424489
    [Abstract] [Full Text] [Related]

  • 9. Transient receptor potential channels in the inner ear: presence of transient receptor potential channel subfamily 1 and 4 in the guinea pig inner ear.
    Takumida M, Kubo N, Ohtani M, Suzuka Y, Anniko M.
    Acta Otolaryngol; 2005 Sep; 125(9):929-34. PubMed ID: 16193584
    [Abstract] [Full Text] [Related]

  • 10. Inner ear transgene expression after adenoviral vector inoculation in the endolymphatic sac.
    Yamasoba T, Yagi M, Roessler BJ, Miller JM, Raphael Y.
    Hum Gene Ther; 1999 Mar 20; 10(5):769-74. PubMed ID: 10210144
    [Abstract] [Full Text] [Related]

  • 11. Detection of atrial natriuretic peptide receptor in the labyrinth of the mouse inner ear.
    Long L, Tang Y, Xia Q, Xia Z, Liu J.
    Neuro Endocrinol Lett; 2008 Aug 20; 29(4):577-80. PubMed ID: 18766159
    [Abstract] [Full Text] [Related]

  • 12. Effect of glycerol on the guinea pig inner ear after removal of the endolymphatic sac.
    Takumida M, Hirakawa K, Harada Y.
    ORL J Otorhinolaryngol Relat Spec; 1995 Aug 20; 57(1):5-9. PubMed ID: 7700612
    [Abstract] [Full Text] [Related]

  • 13. Expression of aquaporins in the cochlea and endolymphatic sac of guinea pig.
    Zhong SX, Liu ZH.
    ORL J Otorhinolaryngol Relat Spec; 2003 Aug 20; 65(5):284-9. PubMed ID: 14730185
    [Abstract] [Full Text] [Related]

  • 14. A probabilistic atlas of the human inner ear's bony labyrinth enables reliable atlas-based segmentation of the total fluid space.
    Kirsch V, Nejatbakhshesfahani F, Ahmadi SA, Dieterich M, Ertl-Wagner B.
    J Neurol; 2019 Sep 20; 266(Suppl 1):52-61. PubMed ID: 31422454
    [Abstract] [Full Text] [Related]

  • 15. Cochlear fluid space dimensions for six species derived from reconstructions of three-dimensional magnetic resonance images.
    Thorne M, Salt AN, DeMott JE, Henson MM, Henson OW, Gewalt SL.
    Laryngoscope; 1999 Oct 20; 109(10):1661-8. PubMed ID: 10522939
    [Abstract] [Full Text] [Related]

  • 16. [In vivo dynamic changes of inner ear guinea pigs with 9.4 T esla MRI].
    Zhao D, Tong BS, Duan ML.
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2020 Apr 07; 55(4):378-383. PubMed ID: 32306636
    [Abstract] [Full Text] [Related]

  • 17. Immunolocalization of aquaporin CHIP in the guinea pig inner ear.
    Stanković KM, Adams JC, Brown D.
    Am J Physiol; 1995 Dec 07; 269(6 Pt 1):C1450-6. PubMed ID: 8572173
    [Abstract] [Full Text] [Related]

  • 18. Detection and quantification of endolymphatic hydrops in the guinea pig cochlea by magnetic resonance microscopy.
    Salt AN, Henson MM, Gewalt SL, Keating AW, DeMott JE, Henson OW.
    Hear Res; 1995 Aug 07; 88(1-2):79-86. PubMed ID: 8576007
    [Abstract] [Full Text] [Related]

  • 19. Auditory threshold and inner ear pressure: measurements in experimental endolymphatic hydrops.
    Andrews JC, Böhmer A, Hoffman L, Strelioff D.
    Am J Otol; 2000 Sep 07; 21(5):652-6. PubMed ID: 10993453
    [Abstract] [Full Text] [Related]

  • 20. INDEPENDENCE OF THE ENDOVESTIBULAR POTENTIAL IN HOMEOTHERMS.
    SCHMIDT RS.
    J Gen Physiol; 1963 Nov 07; 47(2):371-8. PubMed ID: 14080820
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.