These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Molecular characterization of proteolytic processing of the Gag proteins of human spumavirus. Pfrepper KI, Löchelt M, Rackwitz HR, Schnölzer M, Heid H, Flügel RM. J Virol; 1999 Sep; 73(9):7907-11. PubMed ID: 10438890 [Abstract] [Full Text] [Related]
3. Active foamy virus proteinase is essential for virus infectivity but not for formation of a Pol polyprotein. Konvalinka J, Löchelt M, Zentgraf H, Flügel RM, Kräusslich HG. J Virol; 1995 Nov; 69(11):7264-8. PubMed ID: 7474150 [Abstract] [Full Text] [Related]
4. Expression and molecular characterization of an enzymatically active recombinant human spumaretrovirus protease. Pfrepper KI, Löchelt M, Schnölzer M, Flügel RM. Biochem Biophys Res Commun; 1997 Aug 28; 237(3):548-53. PubMed ID: 9299401 [Abstract] [Full Text] [Related]
5. Proteolytic cleavage at the Gag-Pol junction in avian leukosis virus: differences in vitro and in vivo. Stewart L, Vogt VM. Virology; 1994 Oct 28; 204(1):45-59. PubMed ID: 7522375 [Abstract] [Full Text] [Related]
6. Molecular characterization of proteolytic processing of the Gag proteins of human spumaretrovirus. Pfrepper KI, Flügel RM. Methods Mol Biol; 2005 Oct 28; 304():435-44. PubMed ID: 16061995 [Abstract] [Full Text] [Related]
7. Molecular basis for the relative substrate specificity of human immunodeficiency virus type 1 and feline immunodeficiency virus proteases. Beck ZQ, Lin YC, Elder JH. J Virol; 2001 Oct 28; 75(19):9458-69. PubMed ID: 11533208 [Abstract] [Full Text] [Related]
8. Analysis of cleavage site mutations between the NC and PR Gag domains of Rous sarcoma virus. Schatz G, Pichova I, Vogt VM. J Virol; 1997 Jan 28; 71(1):444-50. PubMed ID: 8985369 [Abstract] [Full Text] [Related]
9. Human cytomegalovirus maturational proteinase: expression in Escherichia coli, purification, and enzymatic characterization by using peptide substrate mimics of natural cleavage sites. Burck PJ, Berg DH, Luk TP, Sassmannshausen LM, Wakulchik M, Smith DP, Hsiung HM, Becker GW, Gibson W, Villarreal EC. J Virol; 1994 May 28; 68(5):2937-46. PubMed ID: 8151764 [Abstract] [Full Text] [Related]
10. Structural requirements for enzymatic activities of foamy virus protease-reverse transcriptase. Schneider A, Peter D, Schmitt J, Leo B, Richter F, Rösch P, Wöhrl BM, Hartl MJ. Proteins; 2014 Mar 28; 82(3):375-85. PubMed ID: 23966123 [Abstract] [Full Text] [Related]
11. Molecular characterization of proteolytic processing of the Pol proteins of human foamy virus reveals novel features of the viral protease. Pfrepper KI, Rackwitz HR, Schnölzer M, Heid H, Löchelt M, Flügel RM. J Virol; 1998 Sep 28; 72(9):7648-52. PubMed ID: 9696869 [Abstract] [Full Text] [Related]
12. Studies on the substrate specificity of the proteinase of equine infectious anemia virus using oligopeptide substrates. Tözsér J, Friedman D, Weber IT, Bláha I, Oroszlan S. Biochemistry; 1993 Apr 06; 32(13):3347-53. PubMed ID: 8384879 [Abstract] [Full Text] [Related]
13. Comparative studies on the substrate specificity of avian myeloblastosis virus proteinase and lentiviral proteinases. Tözsér J, Bagossi P, Weber IT, Copeland TD, Oroszlan S. J Biol Chem; 1996 Mar 22; 271(12):6781-8. PubMed ID: 8636100 [Abstract] [Full Text] [Related]
14. Proteolytic processing of foamy virus Gag and Pol proteins. Flügel RM, Pfrepper KI. Curr Top Microbiol Immunol; 2003 Mar 22; 277():63-88. PubMed ID: 12908768 [Abstract] [Full Text] [Related]
15. Hydrolysis of a series of synthetic peptide substrates by the human rhinovirus 14 3C proteinase, cloned and expressed in Escherichia coli. Orr DC, Long AC, Kay J, Dunn BM, Cameron JM. J Gen Virol; 1989 Nov 22; 70 ( Pt 11)():2931-42. PubMed ID: 2555433 [Abstract] [Full Text] [Related]
16. In vitro activity of the herpes simplex virus type 1 protease with peptide substrates. DiIanni CL, Mapelli C, Drier DA, Tsao J, Natarajan S, Riexinger D, Festin SM, Bolgar M, Yamanaka G, Weinheimer SP. J Biol Chem; 1993 Dec 05; 268(34):25449-54. PubMed ID: 8244978 [Abstract] [Full Text] [Related]
17. Study on substrate specificity at subsites for severe acute respiratory syndrome coronavirus 3CL protease. Shan YF, Xu GJ. Acta Biochim Biophys Sin (Shanghai); 2005 Dec 05; 37(12):807-13. PubMed ID: 16331324 [Abstract] [Full Text] [Related]
18. Production of chemokines CTAPIII and NAP/2 by digestion of recombinant ubiquitin-CTAPIII with yeast ubiquitin C-terminal hydrolase and human immunodeficiency virus protease. Mildner AM, Paddock DJ, LeCureux LW, Leone JW, Anderson DC, Tomasselli AG, Heinrikson RL. Protein Expr Purif; 1999 Jul 05; 16(2):347-54. PubMed ID: 10419831 [Abstract] [Full Text] [Related]
19. Structure of an inhibitor complex of the proteinase from feline immunodeficiency virus. Wlodawer A, Gustchina A, Reshetnikova L, Lubkowski J, Zdanov A, Hui KY, Angleton EL, Farmerie WG, Goodenow MM, Bhatt D. Nat Struct Biol; 1995 Jun 05; 2(6):480-8. PubMed ID: 7664111 [Abstract] [Full Text] [Related]
20. Proteolytic processing of particle-associated retroviral polyproteins by homologous and heterologous viral proteinases. Konvalinka J, Heuser AM, Hruskova-Heidingsfeldova O, Vogt VM, Sedlacek J, Strop P, Kräusslich HG. Eur J Biochem; 1995 Feb 15; 228(1):191-8. PubMed ID: 7883003 [Abstract] [Full Text] [Related] Page: [Next] [New Search]