These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
131 related items for PubMed ID: 1122135
1. Evaluation of the water environments in deoxygenated sickle cells by longitudinal and transverse water proton relaxation rates. Thompson BC, Waterman MR, Cottam GL. Arch Biochem Biophys; 1975 Jan; 166(1):193-200. PubMed ID: 1122135 [No Abstract] [Full Text] [Related]
2. Water proton magnetic resonance studies of normal and sickle erythrocytes. Temperature and volume dependence. Zipp A, James TL, Kuntz ID, Shohet SB. Biochim Biophys Acta; 1976 Apr 23; 428(2):291-303. PubMed ID: 1276160 [Abstract] [Full Text] [Related]
3. The gelation of deoxyhemoglobin S in erythrocytes as detected by transverse water proton relazation measurements. Cottam GL, Valentine KM, Yamaoka K, Waterman MR. Arch Biochem Biophys; 1974 Jun 23; 162(2):487-92. PubMed ID: 4407362 [No Abstract] [Full Text] [Related]
4. A temperature-dependent latent-period in the aggregation of sickle-cell deoxyhemoglobin. Malfa R, Steinhardt J. Biochem Biophys Res Commun; 1974 Aug 05; 59(3):887-93. PubMed ID: 4411783 [No Abstract] [Full Text] [Related]
5. Effect of pH, carbamylation and other hemoglobins on deoxyhemoglobin S aggregation inside intact erythrocytes as detected by proton relaxation rate measurements. Chuang AH, Waterman MR, Yamaoka K, Cottam L. Arch Biochem Biophys; 1975 Mar 05; 167(1):145-50. PubMed ID: 236726 [No Abstract] [Full Text] [Related]
13. Comparisons of the kinetic stability of normal and sickle cell human hemoglobins at extremes of pH. Jones DD, McGrath WP, Carroll D, Steinhardt J. Biochemistry; 1973 Sep 25; 12(20):3818-24. PubMed ID: 4745648 [No Abstract] [Full Text] [Related]
15. Effect of oxygen concentration on trasverse water proton relaxation times in erythrocytes homozygous and heterozygous for hemoglonin S. Cottam GL, Waterman MR. Arch Biochem Biophys; 1976 Nov 25; 177(1):293-8. PubMed ID: 187125 [No Abstract] [Full Text] [Related]
16. The polymerization of sickle hemoglobin in solutions and cells. Ferrone FA. Experientia; 1993 Feb 15; 49(2):110-7. PubMed ID: 8440349 [Abstract] [Full Text] [Related]
17. The solubility of hemoglobin beta 4 S, the mutant subunits of sickle cell hemoglobin. Benesch R, Benesch RE, Yung S. Biochem Biophys Res Commun; 1973 Nov 16; 55(2):261-5. PubMed ID: 4767302 [No Abstract] [Full Text] [Related]
18. Light-scattering study of depolymerization kinetics of sickle hemoglobin polymers inside single erythrocytes. Peetermans J, Nishio I, Ohnishi ST, Tanaka T. Proc Natl Acad Sci U S A; 1986 Jan 16; 83(2):352-6. PubMed ID: 3455772 [Abstract] [Full Text] [Related]
19. Studies on the mechanism of action of cyanate in sickle cell disease. Oxygen affinity and gelling properties of hemoglobin S carbamylated on specific chains. Nigen AM, Njikam N, Lee CK, Manning JM. J Biol Chem; 1974 Oct 25; 249(20):6611-6. PubMed ID: 4421180 [No Abstract] [Full Text] [Related]
20. Molecular aspects of tactoid formation in man and animals. Murayama M. Ann N Y Acad Sci; 1974 Nov 29; 241(0):623-37. PubMed ID: 4530686 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]