These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


735 related items for PubMed ID: 11221851

  • 21. Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer.
    Zerbini LF, Wang Y, Cho JY, Libermann TA.
    Cancer Res; 2003 May 01; 63(9):2206-15. PubMed ID: 12727841
    [Abstract] [Full Text] [Related]

  • 22. The TRPS1 transcription factor: androgenic regulation in prostate cancer and high expression in breast cancer.
    Chang GT, Jhamai M, van Weerden WM, Jenster G, Brinkmann AO.
    Endocr Relat Cancer; 2004 Dec 01; 11(4):815-22. PubMed ID: 15613454
    [Abstract] [Full Text] [Related]

  • 23. Id-1 expression induces androgen-independent prostate cancer cell growth through activation of epidermal growth factor receptor (EGF-R).
    Ling MT, Wang X, Lee DT, Tam PC, Tsao SW, Wong YC.
    Carcinogenesis; 2004 Apr 01; 25(4):517-25. PubMed ID: 14688027
    [Abstract] [Full Text] [Related]

  • 24. Conversion from a paracrine to an autocrine mechanism of androgen-stimulated growth during malignant transformation of prostatic epithelial cells.
    Gao J, Arnold JT, Isaacs JT.
    Cancer Res; 2001 Jul 01; 61(13):5038-44. PubMed ID: 11431338
    [Abstract] [Full Text] [Related]

  • 25. Expression and cellular localization of follicle-stimulating hormone receptor in normal human prostate, benign prostatic hyperplasia and prostate cancer.
    Mariani S, Salvatori L, Basciani S, Arizzi M, Franco G, Petrangeli E, Spera G, Gnessi L.
    J Urol; 2006 Jun 01; 175(6):2072-7; discussion 2077. PubMed ID: 16697805
    [Abstract] [Full Text] [Related]

  • 26. Interleukin-6 undergoes transition from growth inhibitor associated with neuroendocrine differentiation to stimulator accompanied by androgen receptor activation during LNCaP prostate cancer cell progression.
    Lee SO, Chun JY, Nadiminty N, Lou W, Gao AC.
    Prostate; 2007 May 15; 67(7):764-73. PubMed ID: 17373716
    [Abstract] [Full Text] [Related]

  • 27. A novel human prostate-specific gene-1 (HPG-1): molecular cloning, sequencing, and its potential involvement in prostate carcinogenesis.
    Herness EA, Naz RK.
    Cancer Res; 2003 Jan 15; 63(2):329-36. PubMed ID: 12543784
    [Abstract] [Full Text] [Related]

  • 28. Complex post-transcriptional regulation of EGF-receptor expression by EGF and TGF-alpha in human prostate cancer cells.
    Seth D, Shaw K, Jazayeri J, Leedman PJ.
    Br J Cancer; 1999 May 15; 80(5-6):657-69. PubMed ID: 10360641
    [Abstract] [Full Text] [Related]

  • 29. Neuroendocrine differentiation in prostate carcinoma: focusing on its pathophysiologic mechanisms and pathological features.
    Alberti C.
    G Chir; 2010 May 15; 31(11-12):568-74. PubMed ID: 21232206
    [Abstract] [Full Text] [Related]

  • 30. Expression, localization and activity of neutral endopeptidase in cultured cells of benign prostatic hyperplasia and prostate cancer.
    Albrecht M, Gillen S, Wilhelm B, Doroszewicz J, Aumüller G.
    J Urol; 2002 Jul 15; 168(1):336-42. PubMed ID: 12050566
    [Abstract] [Full Text] [Related]

  • 31. Cyclooxygenase-2 promotes prostate cancer progression.
    Fujita H, Koshida K, Keller ET, Takahashi Y, Yoshimito T, Namiki M, Mizokami A.
    Prostate; 2002 Nov 01; 53(3):232-40. PubMed ID: 12386924
    [Abstract] [Full Text] [Related]

  • 32. Expression of basal cell keratins in human prostate cancer metastases and cell lines.
    van Leenders GJ, Aalders TW, Hulsbergen-van de Kaa CA, Ruiter DJ, Schalken JA.
    J Pathol; 2001 Dec 01; 195(5):563-70. PubMed ID: 11745692
    [Abstract] [Full Text] [Related]

  • 33. Loss of CD10 (neutral endopeptidase) is a frequent and early event in human prostate cancer.
    Freedland SJ, Seligson DB, Liu AY, Pantuck AJ, Paik SH, Horvath S, Wieder JA, Zisman A, Nguyen D, Tso CL, Palotie AV, Belldegrun AS.
    Prostate; 2003 Apr 01; 55(1):71-80. PubMed ID: 12640663
    [Abstract] [Full Text] [Related]

  • 34. Suppression of prostate tumor cell growth in vivo by WT1, the Wilms' tumor suppressor gene.
    Fraizer G, Leahy R, Priyadarshini S, Graham K, Delacerda J, Diaz M.
    Int J Oncol; 2004 Mar 01; 24(3):461-71. PubMed ID: 14767530
    [Abstract] [Full Text] [Related]

  • 35. Fibroblast growth factor 17 is over-expressed in human prostate cancer.
    Heer R, Douglas D, Mathers ME, Robson CN, Leung HY.
    J Pathol; 2004 Dec 01; 204(5):578-86. PubMed ID: 15538740
    [Abstract] [Full Text] [Related]

  • 36. Expression of ERalpha and ERbeta in prostate cancer.
    Linja MJ, Savinainen KJ, Tammela TL, Isola JJ, Visakorpi T.
    Prostate; 2003 May 15; 55(3):180-6. PubMed ID: 12692783
    [Abstract] [Full Text] [Related]

  • 37. Deletion of peptide amidation enzymatic activity leads to edema and embryonic lethality in the mouse.
    Czyzyk TA, Ning Y, Hsu MS, Peng B, Mains RE, Eipper BA, Pintar JE.
    Dev Biol; 2005 Nov 15; 287(2):301-13. PubMed ID: 16225857
    [Abstract] [Full Text] [Related]

  • 38. Pharmacologic basis for the enhanced efficacy of dutasteride against prostatic cancers.
    Xu Y, Dalrymple SL, Becker RE, Denmeade SR, Isaacs JT.
    Clin Cancer Res; 2006 Jul 01; 12(13):4072-9. PubMed ID: 16818707
    [Abstract] [Full Text] [Related]

  • 39. Transdifferentiation of prostate cancer cells to a neuroendocrine cell phenotype in vitro and in vivo.
    Burchardt T, Burchardt M, Chen MW, Cao Y, de la Taille A, Shabsigh A, Hayek O, Dorai T, Buttyan R.
    J Urol; 1999 Nov 01; 162(5):1800-5. PubMed ID: 10524938
    [Abstract] [Full Text] [Related]

  • 40. Differentially expressed genes in androgen-dependent and -independent prostate carcinomas.
    Chang GT, Blok LJ, Steenbeek M, Veldscholte J, van Weerden WM, van Steenbrugge GJ, Brinkmann AO.
    Cancer Res; 1997 Sep 15; 57(18):4075-81. PubMed ID: 9307296
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 37.