These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. Xu Q, Gao W, Ding SY, Kenig R, Shoham Y, Bayer EA, Lamed R. J Bacteriol; 2003 Aug; 185(15):4548-57. PubMed ID: 12867464 [Abstract] [Full Text] [Related]
3. Novel organization and divergent dockerin specificities in the cellulosome system of Ruminococcus flavefaciens. Rincon MT, Ding SY, McCrae SI, Martin JC, Aurilia V, Lamed R, Shoham Y, Bayer EA, Flint HJ. J Bacteriol; 2003 Feb; 185(3):703-13. PubMed ID: 12533446 [Abstract] [Full Text] [Related]
4. ScaC, an adaptor protein carrying a novel cohesin that expands the dockerin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosome. Rincón MT, Martin JC, Aurilia V, McCrae SI, Rucklidge GJ, Reid MD, Bayer EA, Lamed R, Flint HJ. J Bacteriol; 2004 May; 186(9):2576-85. PubMed ID: 15090497 [Abstract] [Full Text] [Related]
5. Structure-function analyses generate novel specificities to assemble the components of multienzyme bacterial cellulosome complexes. Bule P, Cameron K, Prates JAM, Ferreira LMA, Smith SP, Gilbert HJ, Bayer EA, Najmudin S, Fontes CMGA, Alves VD. J Biol Chem; 2018 Mar 16; 293(11):4201-4212. PubMed ID: 29367338 [Abstract] [Full Text] [Related]
6. Expression, purification, crystallization and preliminary X-ray analysis of CttA, a putative cellulose-binding protein from Ruminococcus flavefaciens. Venditto I, Bule P, Thompson A, Sanchez-Weatherby J, Sandy J, Ferreira LM, Fontes CM, Najmudin S. Acta Crystallogr F Struct Biol Commun; 2015 Jun 16; 71(Pt 6):784-9. PubMed ID: 26057813 [Abstract] [Full Text] [Related]
10. Overexpression, crystallization and preliminary X-ray characterization of Ruminococcus flavefaciens scaffoldin C cohesin in complex with a dockerin from an uncharacterized CBM-containing protein. Bule P, Ruimy-Israeli V, Cardoso V, Bayer EA, Fontes CM, Najmudin S. Acta Crystallogr F Struct Biol Commun; 2014 Aug 16; 70(Pt 8):1061-4. PubMed ID: 25084382 [Abstract] [Full Text] [Related]
12. Insights into a type III cohesin-dockerin recognition interface from the cellulose-degrading bacterium Ruminococcus flavefaciens. Weinstein JY, Slutzki M, Karpol A, Barak Y, Gul O, Lamed R, Bayer EA, Fried DB. J Mol Recognit; 2015 Mar 16; 28(3):148-54. PubMed ID: 25639797 [Abstract] [Full Text] [Related]
15. Ruminococcal cellulosome systems from rumen to human. Ben David Y, Dassa B, Borovok I, Lamed R, Koropatkin NM, Martens EC, White BA, Bernalier-Donadille A, Duncan SH, Flint HJ, Bayer EA, Moraïs S. Environ Microbiol; 2015 Sep 16; 17(9):3407-26. PubMed ID: 25845888 [Abstract] [Full Text] [Related]
16. Higher order scaffoldin assembly in Ruminococcus flavefaciens cellulosome is coordinated by a discrete cohesin-dockerin interaction. Bule P, Pires VMR, Alves VD, Carvalho AL, Prates JAM, Ferreira LMA, Smith SP, Gilbert HJ, Noach I, Bayer EA, Najmudin S, Fontes CMGA. Sci Rep; 2018 May 03; 8(1):6987. PubMed ID: 29725056 [Abstract] [Full Text] [Related]
17. Cellulosome gene cluster analysis for gauging the diversity of the ruminal cellulolytic bacterium Ruminococcus flavefaciens. Jindou S, Brulc JM, Levy-Assaraf M, Rincon MT, Flint HJ, Berg ME, Wilson MK, White BA, Bayer EA, Lamed R, Borovok I. FEMS Microbiol Lett; 2008 Aug 03; 285(2):188-94. PubMed ID: 18564339 [Abstract] [Full Text] [Related]