These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


194 related items for PubMed ID: 11231561

  • 41. The rubber tree (Hevea brasiliensis Muell. Arg.) homologue of the LEAFY/FLORICAULA gene is preferentially expressed in both male and female floral meristems.
    Dornelas MC, Rodriguez AP.
    J Exp Bot; 2005 Jul; 56(417):1965-74. PubMed ID: 15911556
    [Abstract] [Full Text] [Related]

  • 42. Stress-inducible Arabidopsis thaliana RD29A promoter constitutively drives Citrus sinensis APETALA1 and LEAFY expression and precocious flowering in transgenic Citrus spp.
    Orbović V, Ravanfar SA, Acanda Y, Narvaez J, Merritt BA, Levy A, Lovatt CJ.
    Transgenic Res; 2021 Oct; 30(5):687-699. PubMed ID: 34053006
    [Abstract] [Full Text] [Related]

  • 43. A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression.
    Castillejo C, Romera-Branchat M, Pelaz S.
    Plant J; 2005 Aug; 43(4):586-96. PubMed ID: 16098111
    [Abstract] [Full Text] [Related]

  • 44. Prenylation of the floral transcription factor APETALA1 modulates its function.
    Yalovsky S, Rodríguez-Concepción M, Bracha K, Toledo-Ortiz G, Gruissem W.
    Plant Cell; 2000 Aug; 12(8):1257-66. PubMed ID: 10948247
    [Abstract] [Full Text] [Related]

  • 45. Environmental-dependent acceleration of a developmental switch: the floral transition.
    Simpson GG, Dean C.
    Sci STKE; 2000 Feb 08; 2000(18):pe1. PubMed ID: 11752590
    [Abstract] [Full Text] [Related]

  • 46. Plant science. The right time and place for making flowers.
    Blázquez MA.
    Science; 2005 Aug 12; 309(5737):1024-5. PubMed ID: 16099968
    [No Abstract] [Full Text] [Related]

  • 47. APETALA1 and SEPALLATA3 interact to promote flower development.
    Pelaz S, Gustafson-Brown C, Kohalmi SE, Crosby WL, Yanofsky MF.
    Plant J; 2001 May 12; 26(4):385-94. PubMed ID: 11439126
    [Abstract] [Full Text] [Related]

  • 48. Nitrogen as a key regulator of flowering in Fagus crenata: understanding the physiological mechanism of masting by gene expression analysis.
    Miyazaki Y, Maruyama Y, Chiba Y, Kobayashi MJ, Joseph B, Shimizu KK, Mochida K, Hiura T, Kon H, Satake A.
    Ecol Lett; 2014 Oct 12; 17(10):1299-309. PubMed ID: 25103959
    [Abstract] [Full Text] [Related]

  • 49. Citrus transformation using juvenile tissue explants.
    Orbović V, Grosser JW.
    Methods Mol Biol; 2015 Oct 12; 1224():245-57. PubMed ID: 25416263
    [Abstract] [Full Text] [Related]

  • 50. Precocious flowering of juvenile citrus induced by a viral vector based on Citrus leaf blotch virus: a new tool for genetics and breeding.
    Velázquez K, Agüero J, Vives MC, Aleza P, Pina JA, Moreno P, Navarro L, Guerri J.
    Plant Biotechnol J; 2016 Oct 12; 14(10):1976-85. PubMed ID: 26920394
    [Abstract] [Full Text] [Related]

  • 51. Field performance of transgenic citrus trees: assessment of the long-term expression of uidA and nptII transgenes and its impact on relevant agronomic and phenotypic characteristics.
    Pons E, Peris JE, Peña L.
    BMC Biotechnol; 2012 Jul 15; 12():41. PubMed ID: 22794278
    [Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53. Successful crossings with early flowering transgenic poplar: interspecific crossings, but not transgenesis, promoted aberrant phenotypes in offspring.
    Hoenicka H, Lehnhardt D, Nilsson O, Hanelt D, Fladung M.
    Plant Biotechnol J; 2014 Oct 15; 12(8):1066-74. PubMed ID: 24975279
    [Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55. Early-flowering sweet orange mutant 'x11' as a model for functional genomic studies of Citrus.
    Pinheiro TT, Figueira A, Latado RR.
    BMC Res Notes; 2014 Aug 10; 7():511. PubMed ID: 25108567
    [Abstract] [Full Text] [Related]

  • 56. Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in citrus.
    Pillitteri LJ, Lovatt CJ, Walling LL.
    Plant Physiol; 2004 Jul 10; 135(3):1540-51. PubMed ID: 15235113
    [Abstract] [Full Text] [Related]

  • 57. Molecular control and variation in the floral transition.
    Battey NH, Tooke F.
    Curr Opin Plant Biol; 2002 Feb 10; 5(1):62-8. PubMed ID: 11788310
    [Abstract] [Full Text] [Related]

  • 58. Identification of transcription factors potentially involved in the juvenile to adult phase transition in Citrus.
    Castillo MC, Forment J, Gadea J, Carrasco JL, Juarez J, Navarro L, Ancillo G.
    Ann Bot; 2013 Nov 10; 112(7):1371-81. PubMed ID: 24052558
    [Abstract] [Full Text] [Related]

  • 59. Transformation of rice with the Arabidopsis floral regulator LEAFY causes early heading.
    He Z, Zhu Q, Dabi T, Li D, Weigel D, Lamb C.
    Transgenic Res; 2000 Jun 10; 9(3):223-7. PubMed ID: 11032371
    [Abstract] [Full Text] [Related]

  • 60. Genetic ablation of flowers in transgenic Arabidopsis.
    Nilsson O, Wu E, Wolfe DS, Weigel D.
    Plant J; 1998 Sep 10; 15(6):799-804. PubMed ID: 9807818
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.