These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
145 related items for PubMed ID: 11232598
1. RyR1 modulation by oxidation and calmodulin. Hamilton SL, Reid MB. Antioxid Redox Signal; 2000; 2(1):41-5. PubMed ID: 11232598 [Abstract] [Full Text] [Related]
6. Calmodulin and cyclic ADP-ribose interaction in Ca2+ signaling related to cardiac sarcoplasmic reticulum: superoxide anion radical-triggered Ca2+ release. Okabe E, Tsujimoto Y, Kobayashi Y. Antioxid Redox Signal; 2000; 2(1):47-54. PubMed ID: 11232599 [Abstract] [Full Text] [Related]
7. A role for cysteine 3635 of RYR1 in redox modulation and calmodulin binding. Porter Moore C, Zhang JZ, Hamilton SL. J Biol Chem; 1999 Dec 24; 274(52):36831-4. PubMed ID: 10601232 [Abstract] [Full Text] [Related]
8. Functional role of hyperreactive sulfhydryl moieties within the ryanodine receptor complex. Pessah IN, Feng W. Antioxid Redox Signal; 2000 Dec 24; 2(1):17-25. PubMed ID: 11232595 [Abstract] [Full Text] [Related]
9. Apocalmodulin and Ca2+ calmodulin bind to the same region on the skeletal muscle Ca2+ release channel. Moore CP, Rodney G, Zhang JZ, Santacruz-Toloza L, Strasburg G, Hamilton SL. Biochemistry; 1999 Jun 29; 38(26):8532-7. PubMed ID: 10387100 [Abstract] [Full Text] [Related]
12. Molecular nature of sulfhydryl modification by hydrogen peroxide on type 1 ryanodine receptor. Han HM, Wei RS, Lai FA, Yin CC. Acta Pharmacol Sin; 2006 Jul 29; 27(7):888-94. PubMed ID: 16787573 [Abstract] [Full Text] [Related]
13. Nitric oxide protects the skeletal muscle Ca2+ release channel from oxidation induced activation. Aghdasi B, Reid MB, Hamilton SL. J Biol Chem; 1997 Oct 10; 272(41):25462-7. PubMed ID: 9325258 [Abstract] [Full Text] [Related]
14. Loss of the calmodulin-dependent inhibition of the RyR1 calcium release channel upon oxidation of methionines in calmodulin. Boschek CB, Jones TE, Smallwood HS, Squier TC, Bigelow DJ. Biochemistry; 2008 Jan 08; 47(1):131-42. PubMed ID: 18076146 [Abstract] [Full Text] [Related]
15. Calmodulin-binding locations on the skeletal and cardiac ryanodine receptors. Huang X, Fruen B, Farrington DT, Wagenknecht T, Liu Z. J Biol Chem; 2012 Aug 31; 287(36):30328-35. PubMed ID: 22773841 [Abstract] [Full Text] [Related]
16. Identification of apocalmodulin and Ca2+-calmodulin regulatory domain in skeletal muscle Ca2+ release channel, ryanodine receptor. Yamaguchi N, Xin C, Meissner G. J Biol Chem; 2001 Jun 22; 276(25):22579-85. PubMed ID: 11306590 [Abstract] [Full Text] [Related]
17. Redox regulation of cardiac muscle calcium signaling. Morad M, Suzuki YJ. Antioxid Redox Signal; 2000 Jun 22; 2(1):65-71. PubMed ID: 11232602 [Abstract] [Full Text] [Related]
18. Regulation of the RYR1 and RYR2 Ca2+ release channel isoforms by Ca2+-insensitive mutants of calmodulin. Fruen BR, Black DJ, Bloomquist RA, Bardy JM, Johnson JD, Louis CF, Balog EM. Biochemistry; 2003 Mar 11; 42(9):2740-7. PubMed ID: 12614169 [Abstract] [Full Text] [Related]
19. Redox regulation of cardiac and skeletal sarcoplasmic reticulum. Morad M, Suzuki YJ, Okabe E. Antioxid Redox Signal; 2000 Mar 11; 2(1):1-3. PubMed ID: 11232590 [No Abstract] [Full Text] [Related]
20. Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Sun J, Xin C, Eu JP, Stamler JS, Meissner G. Proc Natl Acad Sci U S A; 2001 Sep 25; 98(20):11158-62. PubMed ID: 11562475 [Abstract] [Full Text] [Related] Page: [Next] [New Search]