These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 11251847
1. Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Weber MH, Klein W, Müller L, Niess UM, Marahiel MA. Mol Microbiol; 2001 Mar; 39(5):1321-9. PubMed ID: 11251847 [Abstract] [Full Text] [Related]
2. Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. Klein W, Weber MH, Marahiel MA. J Bacteriol; 1999 Sep; 181(17):5341-9. PubMed ID: 10464205 [Abstract] [Full Text] [Related]
3. A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. Aguilar PS, Cronan JE, de Mendoza D. J Bacteriol; 1998 Apr; 180(8):2194-200. PubMed ID: 9555904 [Abstract] [Full Text] [Related]
4. Differences in cold adaptation of Bacillus subtilis under anaerobic and aerobic conditions. Beranová J, Mansilla MC, de Mendoza D, Elhottová D, Konopásek I. J Bacteriol; 2010 Aug; 192(16):4164-71. PubMed ID: 20581210 [Abstract] [Full Text] [Related]
5. Metabolic control of the membrane fluidity in Bacillus subtilis during cold adaptation. Beranová J, Jemioła-Rzemińska M, Elhottová D, Strzałka K, Konopásek I. Biochim Biophys Acta; 2008 Feb; 1778(2):445-53. PubMed ID: 18154726 [Abstract] [Full Text] [Related]
6. Transcriptional control of the low-temperature-inducible des gene, encoding the delta5 desaturase of Bacillus subtilis. Aguilar PS, Lopez P, de Mendoza D. J Bacteriol; 1999 Nov; 181(22):7028-33. PubMed ID: 10559169 [Abstract] [Full Text] [Related]
7. Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl-lipid desaturase. Cybulski LE, Albanesi D, Mansilla MC, Altabe S, Aguilar PS, de Mendoza D. Mol Microbiol; 2002 Sep; 45(5):1379-88. PubMed ID: 12207704 [Abstract] [Full Text] [Related]
8. Evolution of Bacillus subtilis to enhanced growth at low pressure: up-regulated transcription of des-desKR, encoding the fatty acid desaturase system. Fajardo-Cavazos P, Waters SM, Schuerger AC, George S, Marois JJ, Nicholson WL. Astrobiology; 2012 Mar; 12(3):258-70. PubMed ID: 22416764 [Abstract] [Full Text] [Related]
9. The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Mansilla MC, de Mendoza D. Arch Microbiol; 2005 May; 183(4):229-35. PubMed ID: 15711796 [Abstract] [Full Text] [Related]
10. Involvement of the CasK/R two-component system in optimal unsaturation of the Bacillus cereus fatty acids during low-temperature growth. Diomandé SE, Nguyen-the C, Abee T, Tempelaars MH, Broussolle V, Brillard J. Int J Food Microbiol; 2015 Nov 20; 213():110-7. PubMed ID: 25987542 [Abstract] [Full Text] [Related]
11. Thermal regulation of membrane lipid fluidity by a two-component system in Bacillus subtilis. Bredeston LM, Marciano D, Albanesi D, De Mendoza D, Delfino JM. Biochem Mol Biol Educ; 2011 Nov 20; 39(5):362-6. PubMed ID: 21948508 [Abstract] [Full Text] [Related]
12. Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. Beckering CL, Steil L, Weber MH, Völker U, Marahiel MA. J Bacteriol; 2002 Nov 20; 184(22):6395-402. PubMed ID: 12399512 [Abstract] [Full Text] [Related]
13. Correlation of polyunsaturated fatty acids with the cold adaptation of Rhodotorula glutinis. He J, Yang Z, Hu B, Ji X, Wei Y, Lin L, Zhang Q. Yeast; 2015 Nov 20; 32(11):683-90. PubMed ID: 26284451 [Abstract] [Full Text] [Related]
14. Sigma L is important for cold shock adaptation of Bacillus subtilis. Wiegeshoff F, Beckering CL, Debarbouille M, Marahiel MA. J Bacteriol; 2006 Apr 20; 188(8):3130-3. PubMed ID: 16585774 [Abstract] [Full Text] [Related]
15. Regulation of fatty acid desaturation in Bacillus subtilis. Mansilla MC, Aguilar PS, Albanesi D, Cybulski LE, Altabe S, de Mendoza D. Prostaglandins Leukot Essent Fatty Acids; 2003 Feb 20; 68(2):187-90. PubMed ID: 12538083 [Abstract] [Full Text] [Related]
16. Genetic evidence for the temperature-sensing ability of the membrane domain of the Bacillus subtilis histidine kinase DesK. Hunger K, Beckering CL, Marahiel MA. FEMS Microbiol Lett; 2004 Jan 15; 230(1):41-6. PubMed ID: 14734164 [Abstract] [Full Text] [Related]
17. Membrane fluidization by alcohols inhibits DesK-DesR signalling in Bacillus subtilis. Vaňousová K, Beranová J, Fišer R, Jemioła-Rzemińska M, Matyska Lišková P, Cybulski L, Strzałka K, Konopásek I. Biochim Biophys Acta Biomembr; 2018 Mar 15; 1860(3):718-727. PubMed ID: 29269314 [Abstract] [Full Text] [Related]
18. Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity. López CS, Alice AF, Heras H, Rivas EA, Sánchez-Rivas C. Microbiology (Reading); 2006 Mar 15; 152(Pt 3):605-616. PubMed ID: 16514141 [Abstract] [Full Text] [Related]
19. Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response. Kaan T, Homuth G, Mäder U, Bandow J, Schweder T. Microbiology (Reading); 2002 Nov 15; 148(Pt 11):3441-3455. PubMed ID: 12427936 [Abstract] [Full Text] [Related]
20. Cerulenin inhibits unsaturated fatty acids synthesis in Bacillus subtilis by modifying the input signal of DesK thermosensor. Porrini L, Cybulski LE, Altabe SG, Mansilla MC, de Mendoza D. Microbiologyopen; 2014 Apr 15; 3(2):213-24. PubMed ID: 24574048 [Abstract] [Full Text] [Related] Page: [Next] [New Search]