These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


271 related items for PubMed ID: 11259611

  • 1. Structural and gating changes of the sodium channel induced by mutation of a residue in the upper third of IVS6, creating an external access path for local anesthetics.
    Sunami A, Glaaser IW, Fozzard HA.
    Mol Pharmacol; 2001 Apr; 59(4):684-91. PubMed ID: 11259611
    [Abstract] [Full Text] [Related]

  • 2. A critical residue for isoform difference in tetrodotoxin affinity is a molecular determinant of the external access path for local anesthetics in the cardiac sodium channel.
    Sunami A, Glaaser IW, Fozzard HA.
    Proc Natl Acad Sci U S A; 2000 Feb 29; 97(5):2326-31. PubMed ID: 10681444
    [Abstract] [Full Text] [Related]

  • 3. Novel structural determinants of mu-conotoxin (GIIIB) block in rat skeletal muscle (mu1) Na+ channels.
    Li RA, Ennis IL, Vélez P, Tomaselli GF, Marbán E.
    J Biol Chem; 2000 Sep 08; 275(36):27551-8. PubMed ID: 10859326
    [Abstract] [Full Text] [Related]

  • 4. Sodium channel selectivity filter regulates antiarrhythmic drug binding.
    Sunami A, Dudley SC, Fozzard HA.
    Proc Natl Acad Sci U S A; 1997 Dec 09; 94(25):14126-31. PubMed ID: 9391164
    [Abstract] [Full Text] [Related]

  • 5. Molecular determinants of drug access to the receptor site for antiarrhythmic drugs in the cardiac Na+ channel.
    Qu Y, Rogers J, Tanada T, Scheuer T, Catterall WA.
    Proc Natl Acad Sci U S A; 1995 Dec 05; 92(25):11839-43. PubMed ID: 8524860
    [Abstract] [Full Text] [Related]

  • 6. Specificity for block by saxitoxin and divalent cations at a residue which determines sensitivity of sodium channel subtypes to guanidinium toxins.
    Favre I, Moczydlowski E, Schild L.
    J Gen Physiol; 1995 Aug 05; 106(2):203-29. PubMed ID: 8537816
    [Abstract] [Full Text] [Related]

  • 7. Quaternary ammonium block of mutant Na+ channels lacking inactivation: features of a transition-intermediate mechanism.
    Kimbrough JT, Gingrich KJ.
    J Physiol; 2000 Nov 15; 529 Pt 1(Pt 1):93-106. PubMed ID: 11080254
    [Abstract] [Full Text] [Related]

  • 8. Pore residues critical for mu-CTX binding to rat skeletal muscle Na+ channels revealed by cysteine mutagenesis.
    Li RA, Tsushima RG, Kallen RG, Backx PH.
    Biophys J; 1997 Oct 15; 73(4):1874-84. PubMed ID: 9336183
    [Abstract] [Full Text] [Related]

  • 9. Outward stabilization of the S4 segments in domains III and IV enhances lidocaine block of sodium channels.
    Sheets MF, Hanck DA.
    J Physiol; 2007 Jul 01; 582(Pt 1):317-34. PubMed ID: 17510181
    [Abstract] [Full Text] [Related]

  • 10. Cardiac-specific external paths for lidocaine, defined by isoform-specific residues, accelerate recovery from use-dependent block.
    Lee PJ, Sunami A, Fozzard HA.
    Circ Res; 2001 Nov 23; 89(11):1014-21. PubMed ID: 11717158
    [Abstract] [Full Text] [Related]

  • 11. Exploring the structure of the voltage-gated Na+ channel by an engineered drug access pathway to the receptor site for local anesthetics.
    Lukacs P, Gawali VS, Cervenka R, Ke S, Koenig X, Rubi L, Zarrabi T, Hilber K, Stary-Weinzinger A, Todt H.
    J Biol Chem; 2014 Aug 01; 289(31):21770-81. PubMed ID: 24947510
    [Abstract] [Full Text] [Related]

  • 12. Dependence of mu-conotoxin block of sodium channels on ionic strength but not on the permeating [Na+]: implications for the distinctive mechanistic interactions between Na+ and K+ channel pore-blocking toxins and their molecular targets.
    Li RA, Hui K, French RJ, Sato K, Henrikson CA, Tomaselli GF, Marbán E.
    J Biol Chem; 2003 Aug 15; 278(33):30912-9. PubMed ID: 12764145
    [Abstract] [Full Text] [Related]

  • 13. Unexpected mexiletine responses of a mutant cardiac Na+ channel implicate the selectivity filter as a structural determinant of antiarrhythmic drug access.
    Sasaki K, Makita N, Sunami A, Sakurada H, Shirai N, Yokoi H, Kimura A, Tohse N, Hiraoka M, Kitabatake A.
    Mol Pharmacol; 2004 Aug 15; 66(2):330-6. PubMed ID: 15266024
    [Abstract] [Full Text] [Related]

  • 14. Site-directed mutagenesis of the putative pore region of the rat IIA sodium channel.
    Kontis KJ, Goldin AL.
    Mol Pharmacol; 1993 Apr 15; 43(4):635-44. PubMed ID: 8386312
    [Abstract] [Full Text] [Related]

  • 15. On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel. Effect of alanine mutations at the DEKA locus on selectivity, inhibition by Ca2+ and H+, and molecular sieving.
    Sun YM, Favre I, Schild L, Moczydlowski E.
    J Gen Physiol; 1997 Dec 15; 110(6):693-715. PubMed ID: 9382897
    [Abstract] [Full Text] [Related]

  • 16. Charge at the lidocaine binding site residue Phe-1759 affects permeation in human cardiac voltage-gated sodium channels.
    McNulty MM, Edgerton GB, Shah RD, Hanck DA, Fozzard HA, Lipkind GM.
    J Physiol; 2007 Jun 01; 581(Pt 2):741-55. PubMed ID: 17363383
    [Abstract] [Full Text] [Related]

  • 17. Properties of the mutant Ser-460-Cys implicate this site in a functionally important region of the type IIa Na(+)/P(i) cotransporter protein.
    Lambert G, Forster IC, Stange G, Biber J, Murer H.
    J Gen Physiol; 1999 Nov 01; 114(5):637-52. PubMed ID: 10532962
    [Abstract] [Full Text] [Related]

  • 18. Cyclic nucleotide-gated channels. Pore topology studied through the accessibility of reporter cysteines.
    Becchetti A, Gamel K, Torre V.
    J Gen Physiol; 1999 Sep 01; 114(3):377-92. PubMed ID: 10469728
    [Abstract] [Full Text] [Related]

  • 19. A tryptophan residue (W736) in the amino-terminus of the P-segment of domain II is involved in pore formation in Na(v)1.4 voltage-gated sodium channels.
    Carbonneau E, Vijayaragavan K, Chahine M.
    Pflugers Arch; 2002 Oct 01; 445(1):18-24. PubMed ID: 12397382
    [Abstract] [Full Text] [Related]

  • 20. Cooccupancy of the outer vestibule of voltage-gated sodium channels by micro-conotoxin KIIIA and saxitoxin or tetrodotoxin.
    Zhang MM, Gruszczynski P, Walewska A, Bulaj G, Olivera BM, Yoshikami D.
    J Neurophysiol; 2010 Jul 01; 104(1):88-97. PubMed ID: 20410356
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.