These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


323 related items for PubMed ID: 11272255

  • 1. Mutations in the interdomain loop region of the tetA(A) tetracycline resistance gene increase efflux of minocycline and glycylcyclines.
    Tuckman M, Petersen PJ, Projan SJ.
    Microb Drug Resist; 2000; 6(4):277-82. PubMed ID: 11272255
    [Abstract] [Full Text] [Related]

  • 2. In vitro and in vivo antibacterial activities of a novel glycylcycline, the 9-t-butylglycylamido derivative of minocycline (GAR-936).
    Petersen PJ, Jacobus NV, Weiss WJ, Sum PE, Testa RT.
    Antimicrob Agents Chemother; 1999 Apr; 43(4):738-44. PubMed ID: 10103174
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Substitutions in the interdomain loop of the Tn10 TetA efflux transporter alter tetracycline resistance and substrate specificity.
    Sapunaric FM, Levy SB.
    Microbiology (Reading); 2005 Jul; 151(Pt 7):2315-2322. PubMed ID: 16000721
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. A novel glycylcycline, 9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline, is neither transported nor recognized by the transposon Tn10-encoded metal-tetracycline/H+ antiporter.
    Someya Y, Yamaguchi A, Sawai T.
    Antimicrob Agents Chemother; 1995 Jan; 39(1):247-9. PubMed ID: 7695316
    [Abstract] [Full Text] [Related]

  • 7. In vitro and in vivo antibacterial activities of the glycylcyclines, a new class of semisynthetic tetracyclines.
    Testa RT, Petersen PJ, Jacobus NV, Sum PE, Lee VJ, Tally FP.
    Antimicrob Agents Chemother; 1993 Nov; 37(11):2270-7. PubMed ID: 8285606
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. New developments in tetracycline antibiotics: glycylcyclines and tetracycline efflux pump inhibitors.
    Chopra I.
    Drug Resist Updat; 2002 Nov; 5(3-4):119-25. PubMed ID: 12237079
    [Abstract] [Full Text] [Related]

  • 10. Susceptibilities of Mycoplasma hominis, Mycoplasma pneumoniae, and Ureaplasma urealyticum to new glycylcyclines in comparison with those to older tetracyclines.
    Kenny GE, Cartwright FD.
    Antimicrob Agents Chemother; 1994 Nov; 38(11):2628-32. PubMed ID: 7872759
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Identification of structural and functional domains of the tetracycline efflux protein TetA(P) from Clostridium perfringens.
    Bannam TL, Rood JI.
    Microbiology (Reading); 1999 Oct; 145 ( Pt 10)():2947-55. PubMed ID: 10537217
    [Abstract] [Full Text] [Related]

  • 13. Mutations in the tetA(B) gene that cause a change in substrate specificity of the tetracycline efflux pump.
    Guay GG, Tuckman M, Rothstein DM.
    Antimicrob Agents Chemother; 1994 Apr; 38(4):857-60. PubMed ID: 8031059
    [Abstract] [Full Text] [Related]

  • 14. Preclinical pharmacology of GAR-936, a novel glycylcycline antibacterial agent.
    Projan SJ.
    Pharmacotherapy; 2000 Sep; 20(9 Pt 2):219S-223S; discussion 224S-228S. PubMed ID: 11001329
    [Abstract] [Full Text] [Related]

  • 15. The Clostridium perfringens Tet P determinant comprises two overlapping genes: tetA(P), which mediates active tetracycline efflux, and tetB(P), which is related to the ribosomal protection family of tetracycline-resistance determinants.
    Sloan J, McMurry LM, Lyras D, Levy SB, Rood JI.
    Mol Microbiol; 1994 Jan; 11(2):403-15. PubMed ID: 8170402
    [Abstract] [Full Text] [Related]

  • 16. Fe(2+)-tetracycline-mediated cleavage of the Tn10 tetracycline efflux protein TetA reveals a substrate binding site near glutamine 225 in transmembrane helix 7.
    McMurry LM, Aldema-Ramos ML, Levy SB.
    J Bacteriol; 2002 Sep; 184(18):5113-20. PubMed ID: 12193628
    [Abstract] [Full Text] [Related]

  • 17. Occurrence of tetracycline resistance genes among Escherichia coli isolates from the phase 3 clinical trials for tigecycline.
    Tuckman M, Petersen PJ, Howe AY, Orlowski M, Mullen S, Chan K, Bradford PA, Jones CH.
    Antimicrob Agents Chemother; 2007 Sep; 51(9):3205-11. PubMed ID: 17620376
    [Abstract] [Full Text] [Related]

  • 18. Escherichia coli adapts to tetracycline resistance plasmid (pBR322) by mutating endogenous potassium transport: in silico hypothesis testing.
    Hellweger FL.
    FEMS Microbiol Ecol; 2013 Mar; 83(3):622-31. PubMed ID: 23020150
    [Abstract] [Full Text] [Related]

  • 19. Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936).
    Hirata T, Saito A, Nishino K, Tamura N, Yamaguchi A.
    Antimicrob Agents Chemother; 2004 Jun; 48(6):2179-84. PubMed ID: 15155219
    [Abstract] [Full Text] [Related]

  • 20. Activities of the glycylcyclines N,N-dimethylglycylamido-minocycline and N,N-dimethylglycylamido-6-demethyl-6-deoxytetracycline against Nocardia spp. and tetracycline-resistant isolates of rapidly growing mycobacteria.
    Brown BA, Wallace RJ, Onyi G.
    Antimicrob Agents Chemother; 1996 Apr; 40(4):874-8. PubMed ID: 8849243
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.