These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


603 related items for PubMed ID: 11272814

  • 21. Pentitol metabolism in Lactobacillus casei.
    London J, Chace NM.
    J Bacteriol; 1979 Dec; 140(3):949-54. PubMed ID: 118163
    [Abstract] [Full Text] [Related]

  • 22. METABOLISM OF PENTOSES AND PENTITOLS BY AEROBACTER AEROGENES. II. MECHANISM OF ACQUISITION OF KINASE, ISOMERASE, AND DEHYDROGENASE ACTIVITY.
    MORTLOCK RP, WOOD WA.
    J Bacteriol; 1964 Oct; 88(4):845-9. PubMed ID: 14219045
    [Abstract] [Full Text] [Related]

  • 23. Polyol dehydrogenases of Azotobacter agilis.
    MARCUS L, MARR AG.
    J Bacteriol; 1961 Aug; 82(2):224-32. PubMed ID: 13766585
    [Abstract] [Full Text] [Related]

  • 24. Substrate specificity and kinetic mechanism of Escherichia coli ribulokinase.
    Lee LV, Gerratana B, Cleland WW.
    Arch Biochem Biophys; 2001 Dec 15; 396(2):219-24. PubMed ID: 11747300
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Utilization of D-ribitol by Lactobacillus casei BL23 requires a mannose-type phosphotransferase system and three catabolic enzymes.
    Bourand A, Yebra MJ, Boël G, Mazé A, Deutscher J.
    J Bacteriol; 2013 Jun 15; 195(11):2652-61. PubMed ID: 23564164
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. METABOLISM OF PENTOSES AND PENTITOLS BY AEROBACTER AEROGENES. I. DEMONSTRATION OF PENTOSE ISOMERASE, PENTULOKINASE, AND PENTITOL DEHYDROGENASE ENZYME FAMILIES.
    MORTLOCK RP, WOOD WA.
    J Bacteriol; 1964 Oct 15; 88(4):838-44. PubMed ID: 14219044
    [Abstract] [Full Text] [Related]

  • 33. Growth characteristics and oxidative capacity of Acetobacter aceti IFO 3281: implications for L-ribulose production.
    Kylmä AK, Granström T, Leisola M.
    Appl Microbiol Biotechnol; 2004 Feb 15; 63(5):584-91. PubMed ID: 12898066
    [Abstract] [Full Text] [Related]

  • 34. Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures.
    Moonmangmee D, Adachi O, Ano Y, Shinagawa E, Toyama H, Theeragool G, Lotong N, Matsushita K.
    Biosci Biotechnol Biochem; 2000 Nov 15; 64(11):2306-15. PubMed ID: 11193396
    [Abstract] [Full Text] [Related]

  • 35. Cloning of the xylitol dehydrogenase gene from Gluconobacter oxydans and improved production of xylitol from D-arabitol.
    Sugiyama M, Suzuki S, Tonouchi N, Yokozeki K.
    Biosci Biotechnol Biochem; 2003 Mar 15; 67(3):584-91. PubMed ID: 12723607
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 31.