These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
260 related items for PubMed ID: 11274640
1. Expression of endogenous galectin-1 and galectin-3 in intrahepatic cholangiocarcinoma. Shimonishi T, Miyazaki K, Kono N, Sabit H, Tuneyama K, Harada K, Hirabayashi J, Kasai K, Nakanuma Y. Hum Pathol; 2001 Mar; 32(3):302-10. PubMed ID: 11274640 [Abstract] [Full Text] [Related]
2. Up-regulation of fas ligand at early stages and down-regulation of Fas at progressed stages of intrahepatic cholangiocarcinoma reflect evasion from immune surveillance. Shimonishi T, Isse K, Shibata F, Aburatani I, Tsuneyama K, Sabit H, Harada K, Miyazaki K, Nakanuma Y. Hepatology; 2000 Oct; 32(4 Pt 1):761-9. PubMed ID: 11003620 [Abstract] [Full Text] [Related]
4. Decreased expression of galectin-3 is associated with metastatic potential of liver fluke-associated cholangiocarcinoma. Junking M, Wongkham C, Sripa B, Sawanyawisuth K, Araki N, Wongkham S. Eur J Cancer; 2008 Mar; 44(4):619-26. PubMed ID: 18272359 [Abstract] [Full Text] [Related]
5. Concomitant increases in galectin-1 and its glycoconjugate ligands (carcinoembryonic antigen, lamp-1, and lamp-2) in cultured human colon carcinoma cells by sodium butyrate. Ohannesian DW, Lotan D, Lotan R. Cancer Res; 1994 Nov 15; 54(22):5992-6000. PubMed ID: 7954433 [Abstract] [Full Text] [Related]
6. Anatomic and molecular pathology of intrahepatic cholangiocarcinoma. Nakanuma Y, Harada K, Ishikawa A, Zen Y, Sasaki M. J Hepatobiliary Pancreat Surg; 2003 Nov 15; 10(4):265-81. PubMed ID: 14598145 [Abstract] [Full Text] [Related]
7. Down-regulation of aquaporin-1 in intrahepatic cholangiocarcinoma is related to tumor progression and mucin expression. Aishima S, Kuroda Y, Nishihara Y, Taguchi K, Iguchi T, Taketomi A, Maehara Y, Tsuneyoshi M. Hum Pathol; 2007 Dec 15; 38(12):1819-25. PubMed ID: 17854859 [Abstract] [Full Text] [Related]
8. Proposal of progression model for intrahepatic cholangiocarcinoma: clinicopathologic differences between hilar type and peripheral type. Aishima S, Kuroda Y, Nishihara Y, Iguchi T, Taguchi K, Taketomi A, Maehara Y, Tsuneyoshi M. Am J Surg Pathol; 2007 Jul 15; 31(7):1059-67. PubMed ID: 17592273 [Abstract] [Full Text] [Related]
9. Intrahepatic cholangiocarcinoma arising in cirrhotic liver frequently expressed p63-positive basal/stem-cell phenotype. Nomoto K, Tsuneyama K, Cheng C, Takahashi H, Hori R, Murai Y, Takano Y. Pathol Res Pract; 2006 Jul 15; 202(2):71-6. PubMed ID: 16377099 [Abstract] [Full Text] [Related]
10. Expression of E-cadherin, alpha-catenin, beta-catenin, and CD44 (standard and variant isoforms) in human cholangiocarcinoma: an immunohistochemical study. Ashida K, Terada T, Kitamura Y, Kaibara N. Hepatology; 1998 Apr 15; 27(4):974-82. PubMed ID: 9537436 [Abstract] [Full Text] [Related]
11. Expression of MAGE-A3 in intrahepatic cholangiocarcinoma and its precursor lesions. Tsuneyama K, Sasaki M, Shimonishi T, Nakanuma Y. Pathol Int; 2004 Mar 15; 54(3):181-6. PubMed ID: 14989741 [Abstract] [Full Text] [Related]
12. Peptide antibiotic human beta-defensin-1 and -2 contribute to antimicrobial defense of the intrahepatic biliary tree. Harada K, Ohba K, Ozaki S, Isse K, Hirayama T, Wada A, Nakanuma Y. Hepatology; 2004 Oct 15; 40(4):925-32. PubMed ID: 15382127 [Abstract] [Full Text] [Related]
13. Cellular and stromal characteristics in the scirrhous hepatocellular carcinoma: comparison with hepatocellular carcinomas and intrahepatic cholangiocarcinomas. Okamura N, Yoshida M, Shibuya A, Sugiura H, Okayasu I, Ohbu M. Pathol Int; 2005 Nov 15; 55(11):724-31. PubMed ID: 16271085 [Abstract] [Full Text] [Related]
14. Characterization of apomucin expression in intrahepatic cholangiocarcinomas and their precursor lesions: an immunohistochemical study. Sasaki M, Nakanuma Y, Kim YS. Hepatology; 1996 Nov 15; 24(5):1074-8. PubMed ID: 8903378 [Abstract] [Full Text] [Related]
15. [Evaluation of immunohistochemical markers for differential diagnosis of hepatocellular carcinoma from intrahepatic cholangiocarcinoma]. Dong H, Cong WL, Zhu ZZ, Wang B, Xian ZH, Yu H. Zhonghua Zhong Liu Za Zhi; 2008 Sep 15; 30(9):702-5. PubMed ID: 19173916 [Abstract] [Full Text] [Related]
16. Altered expression of beta-catenin without genetic mutation in intrahepatic cholangiocarcinoma. Sugimachi K, Taguchi K, Aishima S, Tanaka S, Shimada M, Kajiyama K, Sugimachi K, Tsuneyoshi M. Mod Pathol; 2001 Sep 15; 14(9):900-5. PubMed ID: 11557787 [Abstract] [Full Text] [Related]
17. MUC4 is a novel prognostic factor of intrahepatic cholangiocarcinoma-mass forming type. Shibahara H, Tamada S, Higashi M, Goto M, Batra SK, Hollingsworth MA, Imai K, Yonezawa S. Hepatology; 2004 Jan 15; 39(1):220-9. PubMed ID: 14752841 [Abstract] [Full Text] [Related]
18. Fascin overexpression is involved in carcinogenesis and prognosis of human intrahepatic cholangiocarcinoma: immunohistochemical and molecular analysis. Iguchi T, Aishima S, Taketomi A, Nishihara Y, Fujita N, Sanefuji K, Sugimachi K, Yamashita Y, Maehara Y, Tsuneyoshi M. Hum Pathol; 2009 Feb 15; 40(2):174-80. PubMed ID: 18835624 [Abstract] [Full Text] [Related]
19. Immunohistochemical analysis of the progression of flat and papillary preneoplastic lesions in intrahepatic cholangiocarcinogenesis in hepatolithiasis. Itatsu K, Zen Y, Ohira S, Ishikawa A, Sato Y, Harada K, Ikeda H, Sasaki M, Nimura Y, Nakanuma Y. Liver Int; 2007 Nov 15; 27(9):1174-84. PubMed ID: 17919228 [Abstract] [Full Text] [Related]