These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


176 related items for PubMed ID: 11275553

  • 1. Suppression of the accumulation of triosephosphates and increased formation of methylglyoxal in human red blood cells during hyperglycaemia by thiamine in vitro.
    Thornalley PJ, Jahan I, Ng R.
    J Biochem; 2001 Apr; 129(4):543-9. PubMed ID: 11275553
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Transketolase Activity but not Thiamine Membrane Transport Change in Response to Hyperglycaemia and Kidney Dysfunction.
    Chalásová K, Pácal L, Pleskačová A, Knopfová L, Řehořová J, Tomandlová M, Tomandl J, Kaňková K.
    Exp Clin Endocrinol Diabetes; 2018 Apr; 126(4):255-262. PubMed ID: 28950391
    [Abstract] [Full Text] [Related]

  • 4. Modification of the glyoxalase system in human red blood cells by glucose in vitro.
    Thornalley PJ.
    Biochem J; 1988 Sep 15; 254(3):751-5. PubMed ID: 3196289
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal.
    Phillips SA, Thornalley PJ.
    Eur J Biochem; 1993 Feb 15; 212(1):101-5. PubMed ID: 8444148
    [Abstract] [Full Text] [Related]

  • 7. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy.
    Hammes HP, Du X, Edelstein D, Taguchi T, Matsumura T, Ju Q, Lin J, Bierhaus A, Nawroth P, Hannak D, Neumaier M, Bergfeld R, Giardino I, Brownlee M.
    Nat Med; 2003 Mar 15; 9(3):294-9. PubMed ID: 12592403
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. [The role of methylglyoxal metabolism in type-2 diabetes and its complications].
    Kender Z, Torzsa P, Grolmusz K V, Patócs A, Lichthammer A, Veresné Bálint M, Rácz K, Reismann P.
    Orv Hetil; 2012 Apr 15; 153(15):574-85. PubMed ID: 22472358
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Activation of the unfolded protein response in high glucose treated endothelial cells is mediated by methylglyoxal.
    Irshad Z, Xue M, Ashour A, Larkin JR, Thornalley PJ, Rabbani N.
    Sci Rep; 2019 May 27; 9(1):7889. PubMed ID: 31133647
    [Abstract] [Full Text] [Related]

  • 12. Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli.
    Kadner RJ, Murphy GP, Stephens CM.
    J Gen Microbiol; 1992 Oct 27; 138(10):2007-14. PubMed ID: 1479338
    [Abstract] [Full Text] [Related]

  • 13. Role of pyruvate in maintaining cell viability and energy production under high-glucose conditions.
    Yako H, Niimi N, Kato A, Takaku S, Tatsumi Y, Nishito Y, Kato K, Sango K.
    Sci Rep; 2021 Sep 23; 11(1):18910. PubMed ID: 34556698
    [Abstract] [Full Text] [Related]

  • 14. In situ analysis of methylglyoxal metabolism in Saccharomyces cerevisiae.
    Martins AM, Cordeiro CA, Ponces Freire AM.
    FEBS Lett; 2001 Jun 15; 499(1-2):41-4. PubMed ID: 11418108
    [Abstract] [Full Text] [Related]

  • 15. Role of thiamine status and genetic variability in transketolase and other pentose phosphate cycle enzymes in the progression of diabetic nephropathy.
    Pácal L, Tomandl J, Svojanovsky J, Krusová D, Stepánková S, Rehorová J, Olsovsky J, Belobrádková J, Tanhäuserová V, Tomandlová M, Muzík J, Kanková K.
    Nephrol Dial Transplant; 2011 Apr 15; 26(4):1229-36. PubMed ID: 20826743
    [Abstract] [Full Text] [Related]

  • 16. [Relation between the changes in thiamine metabolism and energy processes in erythrocytes of patients with diabetes mellitus and approaches to their correction with drugs].
    Chobit'ko VG, Zakharova NB, Rubin VI.
    Vopr Med Khim; 1986 Apr 15; 32(3):118-21. PubMed ID: 3523986
    [Abstract] [Full Text] [Related]

  • 17. The pentose phosphate pathway of glucose metabolism. Enzyme profiles and transient and steady-state content of intermediates of alternative pathways of glucose metabolism in Krebs ascites cells.
    Gumaa KA, McLean P.
    Biochem J; 1969 Dec 15; 115(5):1009-29. PubMed ID: 5360673
    [Abstract] [Full Text] [Related]

  • 18. Metabolism of ribose-5-phosphate in hemolysates. III. Quantitative determination of sedoheptulose-7-phosphate and some properties of the transketolase of erythrocytes and blood serum.
    BRUNS FH, DUNWALD E, NOLTMANN E.
    Biochem Z; 1958 Dec 15; 330(6):497-508. PubMed ID: 13596392
    [No Abstract] [Full Text] [Related]

  • 19. Thiamine corrects delayed replication and decreases production of lactate and advanced glycation end-products in bovine retinal and human umbilical vein endothelial cells cultured under high glucose conditions.
    La Selva M, Beltramo E, Pagnozzi F, Bena E, Molinatti PA, Molinatti GM, Porta M.
    Diabetologia; 1996 Nov 15; 39(11):1263-8. PubMed ID: 8932990
    [Abstract] [Full Text] [Related]

  • 20. [Effect of vitamins PP and B1 on pentosephosphate pathway enzymatic activity in the kidneys of adrenalectomized rats].
    Strumilo SA, Vinogradov VV.
    Vopr Pitan; 1978 Nov 15; (3):58-60. PubMed ID: 149433
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.