These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1044 related items for PubMed ID: 11280759
1. Effects of chemotherapy by 1,3-bis(2-chloroethyl)-1-nitrosourea on single-quantum- and triple-quantum-filtered 23Na and 31P nuclear magnetic resonance of the subcutaneously implanted 9L glioma. Winter PM, Poptani H, Bansal N. Cancer Res; 2001 Mar 01; 61(5):2002-7. PubMed ID: 11280759 [Abstract] [Full Text] [Related]
2. Predicting and monitoring response to chemotherapy by 1,3-bis(2-chloroethyl)-1-nitrosourea in subcutaneously implanted 9L glioma using the apparent diffusion coefficient of water and 23Na MRI. Babsky AM, Hekmatyar SK, Zhang H, Solomon JL, Bansal N. J Magn Reson Imaging; 2006 Jul 01; 24(1):132-9. PubMed ID: 16758478 [Abstract] [Full Text] [Related]
3. Evaluation of multiple-quantum-filtered 23Na NMR in monitoring intracellular Na content in the isolated perfused rat heart in the absence of a chemical-shift reagent. Tauskela JS, Dizon JM, Whang J, Katz J. J Magn Reson; 1997 Jul 01; 127(1):115-27. PubMed ID: 9245637 [Abstract] [Full Text] [Related]
4. Triple-quantum-filtered (23)Na NMR spectroscopy of subcutaneously implanted 9l gliosarcoma in the rat in the presence of TmDOTP(5-1). Winter PM, Bansal N. J Magn Reson; 2001 Sep 01; 152(1):70-8. PubMed ID: 11531365 [Abstract] [Full Text] [Related]
5. In vivo 31P nuclear magnetic resonance spectroscopy of subcutaneous 9L gliosarcoma: effects of tumor growth and treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea on tumor bioenergetics and histology. Steen RG, Tamargo RJ, McGovern KA, Rajan SS, Brem H, Wehrle JP, Glickson JD. Cancer Res; 1988 Feb 01; 48(3):676-81. PubMed ID: 3335030 [Abstract] [Full Text] [Related]
6. Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Chenevert TL, McKeever PE, Ross BD. Clin Cancer Res; 1997 Sep 01; 3(9):1457-66. PubMed ID: 9815831 [Abstract] [Full Text] [Related]
7. Measurements of in vivo 31P nuclear magnetic resonance spectra in neuroectodermal tumors for the evaluation of the effects of chemotherapy. Naruse S, Hirakawa K, Horikawa Y, Tanaka C, Higuchi T, Ueda S, Nishikawa H, Watari H. Cancer Res; 1985 Jun 01; 45(6):2429-33. PubMed ID: 3986784 [Abstract] [Full Text] [Related]
8. Relationships between cytosolic [ATP], [ATP]/[ADP] and ionic fluxes in the perfused rat heart: A 31P, 23Na and 87Rb NMR study. Stewart LC, Deslauriers R, Kupriyanov VV. J Mol Cell Cardiol; 1994 Oct 01; 26(10):1377-92. PubMed ID: 7869398 [Abstract] [Full Text] [Related]
9. Controlled radio-frequency hyperthermia using an MR scanner and simultaneous monitoring of temperature and therapy response by (1)H, (23)Na and (31)P magnetic resonance spectroscopy in subcutaneously implanted 9L-gliosarcoma. James JR, Gao Y, Soon VC, Topper SM, Babsky A, Bansal N. Int J Hyperthermia; 2010 Feb 01; 26(1):79-90. PubMed ID: 20100055 [Abstract] [Full Text] [Related]
10. Flow thresholds for cerebral energy disturbance and Na+ pump failure as studied by in vivo 31P and 23Na nuclear magnetic resonance spectroscopy. Naritomi H, Sasaki M, Kanashiro M, Kitani M, Sawada T. J Cereb Blood Flow Metab; 1988 Feb 01; 8(1):16-23. PubMed ID: 2448321 [Abstract] [Full Text] [Related]
11. Role of nuclear magnetic resonance spectroscopy (MRS) in cancer diagnosis and treatment: 31P, 23Na, and 1H MRS studies of three models of pancreatic cancer. Kaplan O, Kushnir T, Askenazy N, Knubovets T, Navon G. Cancer Res; 1997 Apr 15; 57(8):1452-9. PubMed ID: 9108445 [Abstract] [Full Text] [Related]
12. Effect of implantation site and growth of hepatocellular carcinoma on apparent diffusion coefficient of water and sodium MRI. Babsky AM, Ju S, Bennett S, George B, McLennan G, Bansal N. NMR Biomed; 2012 Feb 15; 25(2):312-21. PubMed ID: 21823182 [Abstract] [Full Text] [Related]
13. 31P NMR spectroscopy of the in vivo metabolism of an intracerebral glioma in the rat. Ross BD, Higgins RJ, Boggan JE, Knittel B, Garwood M. Magn Reson Med; 1988 Apr 15; 6(4):403-17. PubMed ID: 3380002 [Abstract] [Full Text] [Related]
14. Effects of temperature on intracellular sodium, pH and cellular energy status in RIF-1 tumor cells. Babsky A, Hekmatyar SK, Wehrli S, Nelson D, Bansal N. NMR Biomed; 2004 Feb 15; 17(1):33-42. PubMed ID: 15011249 [Abstract] [Full Text] [Related]
16. Metabolic and ionic changes in muscle during hemorrhagic shock. Blum H, Schnall MD, Renshaw PF, Buzby GP. Circ Shock; 1988 Dec 15; 26(4):341-51. PubMed ID: 3214929 [Abstract] [Full Text] [Related]
17. Insulin protects against hepatic bioenergetic deterioration induced by cancer cachexia: an in vivo 31P magnetic resonance spectroscopy study. Brauer M, Inculet RI, Bhatnagar G, Marsh GD, Driedger AA, Thompson RT. Cancer Res; 1994 Dec 15; 54(24):6383-6. PubMed ID: 7987832 [Abstract] [Full Text] [Related]
18. In vivo 31P nuclear magnetic resonance spectroscopy of subcutaneous 9L gliosarcoma: effects of tumor growth and treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea on tumor bioenergetics and histology. Sijens PE, Bovee WM. Cancer Res; 1988 Oct 01; 48(19):5610-1. PubMed ID: 3416313 [No Abstract] [Full Text] [Related]
19. Selective depletion of tumor ATP by 2-deoxyglucose and insulin, detected by 31P magnetic resonance spectroscopy. Karczmar GS, Arbeit JM, Toy BJ, Speder A, Weiner MW. Cancer Res; 1992 Jan 01; 52(1):71-6. PubMed ID: 1727388 [Abstract] [Full Text] [Related]
20. Growth kinetics and treatment response of the intracerebral rat 9L brain tumor model: a quantitative in vivo study using magnetic resonance imaging. Kim B, Chenevert TL, Ross BD. Clin Cancer Res; 1995 Jun 01; 1(6):643-50. PubMed ID: 9816027 [Abstract] [Full Text] [Related] Page: [Next] [New Search]