These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
120 related items for PubMed ID: 11290818
1. Effect of mutations of N- and C-terminal charged residues on the activity of LCAT. Peelman F, Vanloo B, Verschelde JL, Labeur C, Caster H, Taveirne J, Verhee A, Duverger N, Vandekerckhove J, Tavernier J, Rosseneu M. J Lipid Res; 2001 Apr; 42(4):471-9. PubMed ID: 11290818 [Abstract] [Full Text] [Related]
2. Deletion of N-terminal amino acids from human lecithin:cholesterol acyltransferase differentially affects enzyme activity toward alpha- and beta-substrate lipoproteins. Vickaryous NK, Teh EM, Stewart B, Dolphin PJ, Too CK, McLeod RS. Biochim Biophys Acta; 2003 Mar 21; 1646(1-2):164-72. PubMed ID: 12637024 [Abstract] [Full Text] [Related]
3. A proposed architecture for lecithin cholesterol acyl transferase (LCAT): identification of the catalytic triad and molecular modeling. Peelman F, Vinaimont N, Verhee A, Vanloo B, Verschelde JL, Labeur C, Seguret-Mace S, Duverger N, Hutchinson G, Vandekerckhove J, Tavernier J, Rosseneu M. Protein Sci; 1998 Mar 21; 7(3):587-99. PubMed ID: 9541390 [Abstract] [Full Text] [Related]
4. Relationship between structure and biochemical phenotype of lecithin:cholesterol acyltransferase (LCAT) mutants causing fish-eye disease. Vanloo B, Peelman F, Deschuymere K, Taveirne J, Verhee A, Gouyette C, Labeur C, Vandekerckhove J, Tavernier J, Rosseneu M. J Lipid Res; 2000 May 21; 41(5):752-61. PubMed ID: 10787436 [Abstract] [Full Text] [Related]
5. Effects of natural mutations in lecithin:cholesterol acyltransferase on the enzyme structure and activity. Peelman F, Verschelde JL, Vanloo B, Ampe C, Labeur C, Tavernier J, Vandekerckhove J, Rosseneu M. J Lipid Res; 1999 Jan 21; 40(1):59-69. PubMed ID: 9869650 [Abstract] [Full Text] [Related]
6. Analysis of human lecithin-cholesterol acyltransferase activity by carboxyl-terminal truncation. Lee YP, Adimoolam S, Liu M, Subbaiah PV, Glenn K, Jonas A. Biochim Biophys Acta; 1997 Feb 18; 1344(3):250-61. PubMed ID: 9059515 [Abstract] [Full Text] [Related]
7. Apolipoprotein A-I helix 6 negatively charged residues attenuate lecithin-cholesterol acyltransferase (LCAT) reactivity. Alexander ET, Bhat S, Thomas MJ, Weinberg RB, Cook VR, Bharadwaj MS, Sorci-Thomas M. Biochemistry; 2005 Apr 12; 44(14):5409-19. PubMed ID: 15807534 [Abstract] [Full Text] [Related]
8. A robust all-atom model for LCAT generated by homology modeling. Segrest JP, Jones MK, Catte A, Thirumuruganandham SP. J Lipid Res; 2015 Mar 12; 56(3):620-634. PubMed ID: 25589508 [Abstract] [Full Text] [Related]
9. Role of glutamic acid residues 154, 155, and 165 of lecithin:cholesterol acyltransferase in cholesterol esterification and phospholipase A2 activities. Wang J, DeLozier JA, Gebre AK, Dolphin PJ, Parks JS. J Lipid Res; 1998 Jan 12; 39(1):51-8. PubMed ID: 9469585 [Abstract] [Full Text] [Related]
10. Three arginine residues in apolipoprotein A-I are critical for activation of lecithin:cholesterol acyltransferase. Roosbeek S, Vanloo B, Duverger N, Caster H, Breyne J, De Beun I, Patel H, Vandekerckhove J, Shoulders C, Rosseneu M, Peelman F. J Lipid Res; 2001 Jan 12; 42(1):31-40. PubMed ID: 11160363 [Abstract] [Full Text] [Related]
11. Characterization of functional residues in the interfacial recognition domain of lecithin cholesterol acyltransferase (LCAT). Peelman F, Vanloo B, Perez-Mendez O, Decout A, Verschelde JL, Labeur C, Vinaimont N, Verhee A, Duverger N, Brasseur R, Vandekerckhove J, Tavernier J, Rosseneu M. Protein Eng; 1999 Jan 12; 12(1):71-8. PubMed ID: 10065713 [Abstract] [Full Text] [Related]
12. Structural and functional properties of two mutants of lecithin-cholesterol acyltransferase (T123I and N228K). Adimoolam S, Jin L, Grabbe E, Shieh JJ, Jonas A. J Biol Chem; 1998 Dec 04; 273(49):32561-7. PubMed ID: 9829992 [Abstract] [Full Text] [Related]
13. Probing the 121-136 domain of lecithin:cholesterol acyltransferase using antibodies. Murray KR, Nair MP, Ayyobi AF, Hill JS, Pritchard PH, Lacko AG. Arch Biochem Biophys; 2001 Jan 15; 385(2):267-75. PubMed ID: 11368007 [Abstract] [Full Text] [Related]
14. Deletion of specific glycan chains affects differentially the stability, local structures, and activity of lecithin-cholesterol acyltransferase. Kosman J, Jonas A. J Biol Chem; 2001 Oct 05; 276(40):37230-6. PubMed ID: 11486003 [Abstract] [Full Text] [Related]
15. Role of individual amino acids of apolipoprotein A-I in the activation of lecithin:cholesterol acyltransferase and in HDL rearrangements. Cho KH, Durbin DM, Jonas A. J Lipid Res; 2001 Mar 05; 42(3):379-89. PubMed ID: 11254750 [Abstract] [Full Text] [Related]
16. The high-resolution crystal structure of human LCAT. Piper DE, Romanow WG, Gunawardane RN, Fordstrom P, Masterman S, Pan O, Thibault ST, Zhang R, Meininger D, Schwarz M, Wang Z, King C, Zhou M, Walker NP. J Lipid Res; 2015 Sep 05; 56(9):1711-9. PubMed ID: 26195816 [Abstract] [Full Text] [Related]
17. Surface plasmon resonance biosensor studies of human wild-type and mutant lecithin cholesterol acyltransferase interactions with lipoproteins. Jin L, Shieh JJ, Grabbe E, Adimoolam S, Durbin D, Jonas A. Biochemistry; 1999 Nov 23; 38(47):15659-65. PubMed ID: 10569952 [Abstract] [Full Text] [Related]