These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
163 related items for PubMed ID: 11291453
1. Mercury content in roach (Rutilus rutilus L.) in circumneutral lakes--effects of catchment area and water chemistry. Sonesten L. Environ Pollut; 2001; 112(3):471-81. PubMed ID: 11291453 [Abstract] [Full Text] [Related]
2. Fish mercury levels in lakes--adjusting for Hg and fish-size covariation. Sonesten L. Environ Pollut; 2003; 125(2):255-65. PubMed ID: 12810319 [Abstract] [Full Text] [Related]
3. Land use influence on 137Cs levels in perch (Perca fluviatilis L.) and roach (Rutilus rutilus L.). Sonesten L. J Environ Radioact; 2001; 55(2):125-43. PubMed ID: 11398373 [Abstract] [Full Text] [Related]
4. Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland, and risk assessment for consumer's health. Łuczyńska J, Paszczyk B, Łuczyński MJ. Ecotoxicol Environ Saf; 2018 May 30; 153():60-67. PubMed ID: 29407739 [Abstract] [Full Text] [Related]
5. Development of an ecosystem sensitivity model regarding mercury levels in fish using a preference modeling methodology: application to the Canadian boreal system. Roué-Legall A, Lucotte M, Carreau J, Canuel R, Garcia E. Environ Sci Technol; 2005 Dec 15; 39(24):9412-23. PubMed ID: 16475316 [Abstract] [Full Text] [Related]
6. Fish growth rates and lake sulphate explain variation in mercury levels in ninespine stickleback (Pungitius pungitius) on the Arctic Coastal Plain of Alaska. Burke SM, Zimmerman CE, Laske SM, Koch JC, Derry AM, Guernon S, Branfireun BA, Swanson HK. Sci Total Environ; 2020 Nov 15; 743():140564. PubMed ID: 32758814 [Abstract] [Full Text] [Related]
7. The interactions of abiotic and biotic factors influencing perch Perca fluviatilis and roach Rutilus rutilus populations in small acidified boreal lakes. Linløkken AN, Hesthagen T. J Fish Biol; 2011 Aug 15; 79(2):431-48. PubMed ID: 21781101 [Abstract] [Full Text] [Related]
8. The selenium method for treatment of lakes for elevated levels of mercury in fish. Paulsson K, Lundbergh K. Sci Total Environ; 1989 Nov 15; 87-88():495-507. PubMed ID: 2558416 [Abstract] [Full Text] [Related]
9. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes. Eagles-Smith CA, Herring G, Johnson B, Graw R. Environ Pollut; 2016 May 15; 212():279-289. PubMed ID: 26854697 [Abstract] [Full Text] [Related]
10. Understanding among-lake variability of mercury concentrations in Northern Pike (Esox lucius): A whole-ecosystem study in subarctic lakes. Moslemi-Aqdam M, Baker LF, Baltzer JL, Branfireun BA, Evans MS, Laird BD, Low G, Low M, Swanson HK. Sci Total Environ; 2022 May 20; 822():153430. PubMed ID: 35090925 [Abstract] [Full Text] [Related]
11. Climate and productivity affect total mercury concentration and bioaccumulation rate of fish along a spatial gradient of subarctic lakes. Ahonen SA, Hayden B, Leppänen JJ, Kahilainen KK. Sci Total Environ; 2018 Oct 01; 637-638():1586-1596. PubMed ID: 29801252 [Abstract] [Full Text] [Related]
12. Environmental factors influencing mercury speciation in Subarctic and Boreal lakes. Braaten HF, de Wit HA, Fjeld E, Rognerud S, Lydersen E, Larssen T. Sci Total Environ; 2014 Apr 01; 476-477():336-45. PubMed ID: 24476974 [Abstract] [Full Text] [Related]
13. Development of fish mercury concentrations in Finnish reservoirs from 1979 to 1994. Porvari P. Sci Total Environ; 1998 Jun 10; 213(1-3):279-90. PubMed ID: 9652133 [Abstract] [Full Text] [Related]
14. Comparing nearshore benthic and pelagic prey as mercury sources to lake fish: the importance of prey quality and mercury content. Karimi R, Chen CY, Folt CL. Sci Total Environ; 2016 Sep 15; 565():211-221. PubMed ID: 27173839 [Abstract] [Full Text] [Related]
15. Using Rutilus rutilus (L.) and Perca fluviatilis (L.) as Bioindicators of the Environmental Condition and Human Health: Lake Łańskie, Poland. Łuczyńska J, Paszczyk B, Łuczyński MJ, Kowalska-Góralska M, Nowosad J, Kucharczyk D. Int J Environ Res Public Health; 2020 Oct 19; 17(20):. PubMed ID: 33086547 [Abstract] [Full Text] [Related]
16. Chemometric approach to evaluate element distribution in muscle, liver and fish bone of roach (Rutilus rutilus), silver bream (Blicca bjoerkna) and crucian carp (Carassius carassius) from Swarzędzkie Lake (Poland) using ICP-MS and FIAS-CVAAS techniques. Chudzińska M, Komorowicz I, Hanć A, Gołdyn R, Barałkiewicz D. J Environ Sci Health B; 2016 Nov 19; 51(11):790-800. PubMed ID: 27439756 [Abstract] [Full Text] [Related]
17. Mercury stable isotopes in sediments and largemouth bass from Florida lakes, USA. Sherman LS, Blum JD. Sci Total Environ; 2013 Mar 15; 448():163-75. PubMed ID: 23062970 [Abstract] [Full Text] [Related]