These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


375 related items for PubMed ID: 11292620

  • 1. Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel.
    Woda CB, Bragin A, Kleyman TR, Satlin LM.
    Am J Physiol Renal Physiol; 2001 May; 280(5):F786-93. PubMed ID: 11292620
    [Abstract] [Full Text] [Related]

  • 2. Ontogeny of flow-stimulated potassium secretion in rabbit cortical collecting duct: functional and molecular aspects.
    Woda CB, Miyawaki N, Ramalakshmi S, Ramkumar M, Rojas R, Zavilowitz B, Kleyman TR, Satlin LM.
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F629-39. PubMed ID: 12824078
    [Abstract] [Full Text] [Related]

  • 3. Dietary K+ regulates apical membrane expression of maxi-K channels in rabbit cortical collecting duct.
    Najjar F, Zhou H, Morimoto T, Bruns JB, Li HS, Liu W, Kleyman TR, Satlin LM.
    Am J Physiol Renal Physiol; 2005 Oct; 289(4):F922-32. PubMed ID: 15914780
    [Abstract] [Full Text] [Related]

  • 4. Ca2+ dependence of flow-stimulated K secretion in the mammalian cortical collecting duct.
    Liu W, Morimoto T, Woda C, Kleyman TR, Satlin LM.
    Am J Physiol Renal Physiol; 2007 Jul; 293(1):F227-35. PubMed ID: 17389680
    [Abstract] [Full Text] [Related]

  • 5. Role of NKCC in BK channel-mediated net K⁺ secretion in the CCD.
    Liu W, Schreck C, Coleman RA, Wade JB, Hernandez Y, Zavilowitz B, Warth R, Kleyman TR, Satlin LM.
    Am J Physiol Renal Physiol; 2011 Nov; 301(5):F1088-97. PubMed ID: 21816753
    [Abstract] [Full Text] [Related]

  • 6. The mechanosensitive BKα/β1 channel localizes to cilia of principal cells in rabbit cortical collecting duct (CCD).
    Carrisoza-Gaytán R, Wang L, Schreck C, Kleyman TR, Wang WH, Satlin LM.
    Am J Physiol Renal Physiol; 2017 Jan 01; 312(1):F143-F156. PubMed ID: 27806944
    [Abstract] [Full Text] [Related]

  • 7. Cation specificity and pharmacological properties of the Ca(2+)-dependent K+ channel of rat cortical collecting ducts.
    Schlatter E, Bleich M, Hirsch J, Markstahler U, Fröbe U, Greger R.
    Pflugers Arch; 1993 Feb 01; 422(5):481-91. PubMed ID: 7682688
    [Abstract] [Full Text] [Related]

  • 8. Flow-dependent activation of maxi K+ channels in apical membrane of rabbit connecting tubule.
    Taniguchi J, Imai M.
    J Membr Biol; 1998 Jul 01; 164(1):35-45. PubMed ID: 9636242
    [Abstract] [Full Text] [Related]

  • 9. Ca(2+)-dependent K+ channels in the cortical collecting duct of rat.
    Hirsch JR, Schlatter E.
    Wien Klin Wochenschr; 1997 Jun 27; 109(12-13):485-8. PubMed ID: 9261990
    [Abstract] [Full Text] [Related]

  • 10. Kidney-specific WNK1 regulates sodium reabsorption and potassium secretion in mouse cortical collecting duct.
    Cheng CJ, Baum M, Huang CL.
    Am J Physiol Renal Physiol; 2013 Feb 15; 304(4):F397-402. PubMed ID: 23195681
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter's) knockout mice.
    Lu M, Wang T, Yan Q, Yang X, Dong K, Knepper MA, Wang W, Giebisch G, Shull GE, Hebert SC.
    J Biol Chem; 2002 Oct 04; 277(40):37881-7. PubMed ID: 12130653
    [Abstract] [Full Text] [Related]

  • 13. Dynamic coupling between TRPV4 and Ca2+-activated SK1/3 and IK1 K+ channels plays a critical role in regulating the K+-secretory BK channel in kidney collecting duct cells.
    Li Y, Hu H, Tian JB, Zhu MX, O'Neil RG.
    Am J Physiol Renal Physiol; 2017 Jun 01; 312(6):F1081-F1089. PubMed ID: 28274924
    [Abstract] [Full Text] [Related]

  • 14. Renal potassium channels: recent developments.
    Wang W.
    Curr Opin Nephrol Hypertens; 2004 Sep 01; 13(5):549-55. PubMed ID: 15300162
    [Abstract] [Full Text] [Related]

  • 15. Inhibition of MAPK stimulates the Ca2+ -dependent big-conductance K channels in cortical collecting duct.
    Li D, Wang Z, Sun P, Jin Y, Lin DH, Hebert SC, Giebisch G, Wang WH.
    Proc Natl Acad Sci U S A; 2006 Dec 19; 103(51):19569-74. PubMed ID: 17151195
    [Abstract] [Full Text] [Related]

  • 16. Apamin-sensitive conductance mediates the K(+) current response during chemical ischemia in CA3 pyramidal cells.
    Tanabe M, Mori M, Gähwiler BH, Gerber U.
    J Neurophysiol; 1999 Dec 19; 82(6):2876-82. PubMed ID: 10601426
    [Abstract] [Full Text] [Related]

  • 17. PKC expression is regulated by dietary K intake and mediates internalization of SK channels in the CCD.
    Sterling H, Lin DH, Chen YJ, Wei Y, Wang ZJ, Lai J, Wang WH.
    Am J Physiol Renal Physiol; 2004 Jun 19; 286(6):F1072-8. PubMed ID: 15130898
    [Abstract] [Full Text] [Related]

  • 18. Stimulation of maxi-K channels in trabecular meshwork by tyrosine kinase inhibitors.
    Stumpff F, Que Y, Boxberger M, Strauss O, Wiederholt M.
    Invest Ophthalmol Vis Sci; 1999 Jun 19; 40(7):1404-17. PubMed ID: 10359322
    [Abstract] [Full Text] [Related]

  • 19. Characterization of maxi-K-channels in bovine trabecular meshwork and their activation by cyclic guanosine monophosphate.
    Stumpff F, Strauss O, Boxberger M, Wiederholt M.
    Invest Ophthalmol Vis Sci; 1997 Aug 19; 38(9):1883-92. PubMed ID: 9286279
    [Abstract] [Full Text] [Related]

  • 20. High-conductance K channels in intercalated cells of the rat distal nephron.
    Palmer LG, Frindt G.
    Am J Physiol Renal Physiol; 2007 Mar 19; 292(3):F966-73. PubMed ID: 17062847
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.