These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
674 related items for PubMed ID: 11297505
1. Regulation of translation initiation by FRAP/mTOR. Gingras AC, Raught B, Sonenberg N. Genes Dev; 2001 Apr 01; 15(7):807-26. PubMed ID: 11297505 [No Abstract] [Full Text] [Related]
2. Type 1 insulin-like growth factor regulates MT1-MMP synthesis and tumor invasion via PI 3-kinase/Akt signaling. Zhang D, Brodt P. Oncogene; 2003 Feb 20; 22(7):974-82. PubMed ID: 12592384 [Abstract] [Full Text] [Related]
3. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, Simons JW, Semenza GL. Cancer Res; 2000 Mar 15; 60(6):1541-5. PubMed ID: 10749120 [Abstract] [Full Text] [Related]
4. Unique, highly proliferative growth phenotype expressed by embryonic and neointimal smooth muscle cells is driven by constitutive Akt, mTOR, and p70S6K signaling and is actively repressed by PTEN. Mourani PM, Garl PJ, Wenzlau JM, Carpenter TC, Stenmark KR, Weiser-Evans MC. Circulation; 2004 Mar 16; 109(10):1299-306. PubMed ID: 14993145 [Abstract] [Full Text] [Related]
5. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, Frost P, Gibbons JJ, Wu H, Sawyers CL. Proc Natl Acad Sci U S A; 2001 Aug 28; 98(18):10314-9. PubMed ID: 11504908 [Abstract] [Full Text] [Related]
6. Insulin-induced Drosophila S6 kinase activation requires phosphoinositide 3-kinase and protein kinase B. Lizcano JM, Alrubaie S, Kieloch A, Deak M, Leevers SJ, Alessi DR. Biochem J; 2003 Sep 01; 374(Pt 2):297-306. PubMed ID: 12841848 [Abstract] [Full Text] [Related]
7. Activation of phosphatidylinositol 3-kinase, protein kinase B, and p70 S6 kinases in lipopolysaccharide-stimulated Raw 264.7 cells: differential effects of rapamycin, Ly294002, and wortmannin on nitric oxide production. Salh B, Wagey R, Marotta A, Tao JS, Pelech S. J Immunol; 1998 Dec 15; 161(12):6947-54. PubMed ID: 9862729 [Abstract] [Full Text] [Related]
8. A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1. Ozes ON, Akca H, Mayo LD, Gustin JA, Maehama T, Dixon JE, Donner DB. Proc Natl Acad Sci U S A; 2001 Apr 10; 98(8):4640-5. PubMed ID: 11287630 [Abstract] [Full Text] [Related]
9. Preferential killing of PTEN-null myelomas by PI3K inhibitors through Akt pathway. Zhang J, Choi Y, Mavromatis B, Lichtenstein A, Li W. Oncogene; 2003 Sep 18; 22(40):6289-95. PubMed ID: 13679867 [Abstract] [Full Text] [Related]
10. Introduction: multifaceted roles of lipids and their catabolites in immune cell signaling. Ott VL, Cambier JC. Semin Immunol; 2002 Feb 18; 14(1):1-6. PubMed ID: 11884225 [No Abstract] [Full Text] [Related]
11. Signaling from Akt to FRAP/TOR targets both 4E-BP and S6K in Drosophila melanogaster. Miron M, Lasko P, Sonenberg N. Mol Cell Biol; 2003 Dec 18; 23(24):9117-26. PubMed ID: 14645523 [Abstract] [Full Text] [Related]
12. Insulin and IGF-I stimulate the formation of the eukaryotic initiation factor 4F complex and protein synthesis in C2C12 myotubes independent of availability of external amino acids. Shen WH, Boyle DW, Wisniowski P, Bade A, Liechty EA. J Endocrinol; 2005 May 18; 185(2):275-89. PubMed ID: 15845920 [Abstract] [Full Text] [Related]
13. A new selective AKT pharmacological inhibitor reduces resistance to chemotherapeutic drugs, TRAIL, all-trans-retinoic acid, and ionizing radiation of human leukemia cells. Martelli AM, Tazzari PL, Tabellini G, Bortul R, Billi AM, Manzoli L, Ruggeri A, Conte R, Cocco L. Leukemia; 2003 Sep 18; 17(9):1794-805. PubMed ID: 12970779 [Abstract] [Full Text] [Related]
14. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC, Abraham RT. EMBO J; 1996 Oct 01; 15(19):5256-67. PubMed ID: 8895571 [Abstract] [Full Text] [Related]
15. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Sekulić A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT. Cancer Res; 2000 Jul 01; 60(13):3504-13. PubMed ID: 10910062 [Abstract] [Full Text] [Related]
16. Control of translation by the target of rapamycin proteins. Gingras AC, Raught B, Sonenberg N. Prog Mol Subcell Biol; 2001 Jul 01; 27():143-74. PubMed ID: 11575159 [No Abstract] [Full Text] [Related]
17. Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI. Raught B, Gingras AC, Gygi SP, Imataka H, Morino S, Gradi A, Aebersold R, Sonenberg N. EMBO J; 2000 Feb 01; 19(3):434-44. PubMed ID: 10654941 [Abstract] [Full Text] [Related]
18. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E. Genes Dev; 2000 Nov 01; 14(21):2689-94. PubMed ID: 11069885 [Abstract] [Full Text] [Related]
19. Rapamycin's resurrection: a new way to target the cancer cell cycle. Garber K. J Natl Cancer Inst; 2001 Oct 17; 93(20):1517-9. PubMed ID: 11604470 [No Abstract] [Full Text] [Related]
20. Inhibition of cellular growth and proliferation by dTOR overexpression in Drosophila. Hennig KM, Neufeld TP. Genesis; 2002 Oct 17; 34(1-2):107-10. PubMed ID: 12324961 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]