These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: universality with respect to the stochastic dynamics. Buendía GM, Rikvold PA. Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051108. PubMed ID: 19113096 [Abstract] [Full Text] [Related]
3. Absence of first-order transition and tricritical point in the dynamic phase diagram of a spatially extended bistable system in an oscillating field. Korniss G, Rikvold PA, Novotny MA. Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056127. PubMed ID: 12513576 [Abstract] [Full Text] [Related]
5. Conjugate field and fluctuation-dissipation relation for the dynamic phase transition in the two-dimensional kinetic Ising model. Robb DT, Rikvold PA, Berger A, Novotny MA. Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021124. PubMed ID: 17930023 [Abstract] [Full Text] [Related]
6. Dynamic phase transition of the Blume-Capel model in an oscillating magnetic field. Vatansever E, Fytas NG. Phys Rev E; 2018 Jan; 97(1-1):012122. PubMed ID: 29448362 [Abstract] [Full Text] [Related]
10. Decay of metastable phases in a model for the catalytic oxidation of CO. Machado E, Buendía GM, Rikvold PA. Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031603. PubMed ID: 15903439 [Abstract] [Full Text] [Related]
11. Monte Carlo study of the two-dimensional kinetic Blume-Capel model in a quenched random crystal field. Vasilopoulos A, Vatansever ZD, Vatansever E, Fytas NG. Phys Rev E; 2021 Aug; 104(2-1):024108. PubMed ID: 34525625 [Abstract] [Full Text] [Related]
12. Exploring the equilibrium and dynamic phase transition properties of the Ising ferromagnet on a decorated triangular lattice. Yüksel Y. Phys Rev E; 2023 Sep; 108(3-1):034125. PubMed ID: 37849121 [Abstract] [Full Text] [Related]
14. Order-disorder transition in a model with two symmetric absorbing states. Park SC. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041140. PubMed ID: 22680451 [Abstract] [Full Text] [Related]
18. Verification of Ising phase transitions in the three-dimensional Ashkin-Teller model using Monte Carlo simulations. Szukowski G, Kamieniarz G, Musiał G. Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031124. PubMed ID: 18517346 [Abstract] [Full Text] [Related]
19. Phase transition of a one-dimensional Ising model with distance-dependent connections. Chang Y, Sun L, Cai X. Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021101. PubMed ID: 17930000 [Abstract] [Full Text] [Related]