These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
221 related items for PubMed ID: 11311136
1. Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum. Elliott JL, Saliba KJ, Kirk K. Biochem J; 2001 May 01; 355(Pt 3):733-9. PubMed ID: 11311136 [Abstract] [Full Text] [Related]
2. The Malaria Parasite's Lactate Transporter PfFNT Is the Target of Antiplasmodial Compounds Identified in Whole Cell Phenotypic Screens. Hapuarachchi SV, Cobbold SA, Shafik SH, Dennis AS, McConville MJ, Martin RE, Kirk K, Lehane AM. PLoS Pathog; 2017 Feb 01; 13(2):e1006180. PubMed ID: 28178359 [Abstract] [Full Text] [Related]
3. Identity of a Plasmodium lactate/H(+) symporter structurally unrelated to human transporters. Wu B, Rambow J, Bock S, Holm-Bertelsen J, Wiechert M, Soares AB, Spielmann T, Beitz E. Nat Commun; 2015 Feb 11; 6():6284. PubMed ID: 25669138 [Abstract] [Full Text] [Related]
4. Characterization of the enhanced transport of L- and D-lactate into human red blood cells infected with Plasmodium falciparum suggests the presence of a novel saturable lactate proton cotransporter. Cranmer SL, Conant AR, Gutteridge WE, Halestrap AP. J Biol Chem; 1995 Jun 23; 270(25):15045-52. PubMed ID: 7797486 [Abstract] [Full Text] [Related]
5. Transport of lactate in Plasmodium falciparum-infected human erythrocytes. Kanaani J, Ginsburg H. J Cell Physiol; 1991 Dec 23; 149(3):469-76. PubMed ID: 1660483 [Abstract] [Full Text] [Related]
6. A lactate and formate transporter in the intraerythrocytic malaria parasite, Plasmodium falciparum. Marchetti RV, Lehane AM, Shafik SH, Winterberg M, Martin RE, Kirk K. Nat Commun; 2015 Mar 31; 6():6721. PubMed ID: 25823844 [Abstract] [Full Text] [Related]
7. H+-coupled pantothenate transport in the intracellular malaria parasite. Saliba KJ, Kirk K. J Biol Chem; 2001 May 25; 276(21):18115-21. PubMed ID: 11278793 [Abstract] [Full Text] [Related]
8. Kinetic characterization of Na+/H+ antiport of Plasmodium falciparum membrane. Bosia A, Ghigo D, Turrini F, Nissani E, Pescarmona GP, Ginsburg H. J Cell Physiol; 1993 Mar 25; 154(3):527-34. PubMed ID: 8382209 [Abstract] [Full Text] [Related]
9. An acid-loading chloride transport pathway in the intraerythrocytic malaria parasite, Plasmodium falciparum. Henry RI, Cobbold SA, Allen RJ, Khan A, Hayward R, Lehane AM, Bray PG, Howitt SM, Biagini GA, Saliba KJ, Kirk K. J Biol Chem; 2010 Jun 11; 285(24):18615-26. PubMed ID: 20332090 [Abstract] [Full Text] [Related]
10. Characterization of the inhibition by stilbene disulphonates and phloretin of lactate and pyruvate transport into rat and guinea-pig cardiac myocytes suggests the presence of two kinetically distinct carriers in heart cells. Wang X, Poole RC, Halestrap AP, Levi AJ. Biochem J; 1993 Feb 15; 290 ( Pt 1)(Pt 1):249-58. PubMed ID: 8439293 [Abstract] [Full Text] [Related]
11. Lactate retards the development of erythrocytic stages of the human malaria parasite Plasmodium falciparum. Hikosaka K, Hirai M, Komatsuya K, Ono Y, Kita K. Parasitol Int; 2015 Jun 15; 64(3):301-3. PubMed ID: 25176135 [Abstract] [Full Text] [Related]
12. Efflux of 6-deoxy-D-glucose from Plasmodium falciparum-infected erythrocytes via two saturable carriers. Goodyer ID, Hayes DJ, Eisenthal R. Mol Biochem Parasitol; 1997 Feb 15; 84(2):229-39. PubMed ID: 9084042 [Abstract] [Full Text] [Related]
13. Sodium-dependent uptake of inorganic phosphate by the intracellular malaria parasite. Saliba KJ, Martin RE, Bröer A, Henry RI, McCarthy CS, Downie MJ, Allen RJ, Mullin KA, McFadden GI, Bröer S, Kirk K. Nature; 2006 Oct 05; 443(7111):582-5. PubMed ID: 17006451 [Abstract] [Full Text] [Related]
14. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters. Nancolas B, Guo L, Zhou R, Nath K, Nelson DS, Leeper DB, Blair IA, Glickson JD, Halestrap AP. Biochem J; 2016 Apr 01; 473(7):929-36. PubMed ID: 26831515 [Abstract] [Full Text] [Related]
15. Functional evidence for a monocarboxylate transporter (MCT) in strial marginal cells and molecular evidence for MCT1 and MCT2 in stria vascularis. Shimozono M, Scofield MA, Wangemann P. Hear Res; 1997 Dec 01; 114(1-2):213-22. PubMed ID: 9447934 [Abstract] [Full Text] [Related]
16. An endogenous monocarboxylate transport in Xenopus laevis oocytes. Tosco M, Orsenigo MN, Gastaldi G, Faelli A. Am J Physiol Regul Integr Comp Physiol; 2000 May 01; 278(5):R1190-5. PubMed ID: 10801286 [Abstract] [Full Text] [Related]
17. Localisation of a candidate anion transporter to the surface of the malaria parasite. Henry RI, Martin RE, Howitt SM, Kirk K. Biochem Biophys Res Commun; 2007 Nov 16; 363(2):288-91. PubMed ID: 17870052 [Abstract] [Full Text] [Related]
18. [Transport proteins as drug targets in Plasmodium falciparum. New perspectives in the treatment of malaria]. Ellekvist P, Colding H. Ugeskr Laeger; 2006 Mar 27; 168(13):1314-7. PubMed ID: 16579884 [Abstract] [Full Text] [Related]
19. Kinetics of lactate and pyruvate transport in cultured rat myotubes. von Grumbckow L, Elsner P, Hellsten Y, Quistorff B, Juel C. Biochim Biophys Acta; 1999 Mar 04; 1417(2):267-75. PubMed ID: 10082802 [Abstract] [Full Text] [Related]
20. Vestibular dark cells contain an H+/monocarboxylate- cotransporter in their apical and basolateral membrane. Shimozono M, Liu J, Scofield MA, Wangemann P. J Membr Biol; 1998 May 01; 163(1):37-46. PubMed ID: 9569248 [Abstract] [Full Text] [Related] Page: [Next] [New Search]