These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


612 related items for PubMed ID: 11321585

  • 1. SigB, SigC, and SigE from Myxococcus xanthus homologous to sigma32 are not required for heat shock response but for multicellular differentiation.
    Ueki T, Inouye S.
    J Mol Microbiol Biotechnol; 2001 Apr; 3(2):287-93. PubMed ID: 11321585
    [Abstract] [Full Text] [Related]

  • 2. SigF, a new sigma factor required for a motility system of Myxococcus xanthus.
    Ueki T, Xu CY, Inouye S.
    J Bacteriol; 2005 Dec; 187(24):8537-41. PubMed ID: 16321963
    [Abstract] [Full Text] [Related]

  • 3. Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation.
    Nakahigashi K, Yanagi H, Yura T.
    Nucleic Acids Res; 1995 Nov 11; 23(21):4383-90. PubMed ID: 7501460
    [Abstract] [Full Text] [Related]

  • 4. A new putative sigma factor of Myxococcus xanthus.
    Apelian D, Inouye S.
    J Bacteriol; 1993 Jun 11; 175(11):3335-42. PubMed ID: 8501037
    [Abstract] [Full Text] [Related]

  • 5. A new sigma factor, SigD, essential for stationary phase is also required for multicellular differentiation in Myxococcus xanthus.
    Ueki T, Inouye S.
    Genes Cells; 1998 Jun 11; 3(6):371-85. PubMed ID: 9734783
    [Abstract] [Full Text] [Related]

  • 6. Characterization of a small heat shock protein, Mx Hsp16.6, of Myxococcus xanthus.
    Otani M, Ueki T, Kozuka S, Segawa M, Sano K, Inouye S.
    J Bacteriol; 2005 Aug 11; 187(15):5236-41. PubMed ID: 16030217
    [Abstract] [Full Text] [Related]

  • 7. Isolation and characterization of the Xanthomonas campestris rpoH gene coding for a 32-kDa heat shock sigma factor.
    Huang LH, Tseng YH, Yang MT.
    Biochem Biophys Res Commun; 1998 Mar 27; 244(3):854-60. PubMed ID: 9535756
    [Abstract] [Full Text] [Related]

  • 8. [Isolation and disruption analysis of a developmental gene of Myxococcus xanthus].
    Mao X, Wang D, Liu F.
    Wei Sheng Wu Xue Bao; 2002 Jun 27; 42(3):316-20. PubMed ID: 12557372
    [Abstract] [Full Text] [Related]

  • 9. The heat shock response in the cyanobacterium Synechocystis sp. Strain PCC 6803 and regulation of gene expression by HrcA and SigB.
    Singh AK, Summerfield TC, Li H, Sherman LA.
    Arch Microbiol; 2006 Oct 27; 186(4):273-86. PubMed ID: 16868740
    [Abstract] [Full Text] [Related]

  • 10. Identification of a protein Ser/Thr kinase cascade that regulates essential transcriptional activators in Myxococcus xanthus development.
    Nariya H, Inouye S.
    Mol Microbiol; 2005 Oct 27; 58(2):367-79. PubMed ID: 16194226
    [Abstract] [Full Text] [Related]

  • 11. Dynamic interplay between antagonistic pathways controlling the sigma 32 level in Escherichia coli.
    Morita MT, Kanemori M, Yanagi H, Yura T.
    Proc Natl Acad Sci U S A; 2000 May 23; 97(11):5860-5. PubMed ID: 10801971
    [Abstract] [Full Text] [Related]

  • 12. A protein Ser/Thr kinase cascade negatively regulates the DNA-binding activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus development.
    Nariya H, Inouye S.
    Mol Microbiol; 2006 Jun 23; 60(5):1205-17. PubMed ID: 16689796
    [Abstract] [Full Text] [Related]

  • 13. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH.
    Engels S, Schweitzer JE, Ludwig C, Bott M, Schaffer S.
    Mol Microbiol; 2004 Apr 23; 52(1):285-302. PubMed ID: 15049827
    [Abstract] [Full Text] [Related]

  • 14. Enhancer-binding proteins with a forkhead-associated domain and the sigma54 regulon in Myxococcus xanthus fruiting body development.
    Jelsbak L, Givskov M, Kaiser D.
    Proc Natl Acad Sci U S A; 2005 Feb 22; 102(8):3010-5. PubMed ID: 15668379
    [Abstract] [Full Text] [Related]

  • 15. Myxococcus xanthus twin-arginine translocation system is important for growth and development.
    Kimura Y, Saiga H, Hamanaka H, Matoba H.
    Arch Microbiol; 2006 Feb 22; 184(6):387-96. PubMed ID: 16331440
    [Abstract] [Full Text] [Related]

  • 16. The SigB sigma factor mediates high-temperature responses in the cyanobacterium Synechocystis sp. PCC6803.
    Tuominen I, Pollari M, Tyystjärvi E, Tyystjärvi T.
    FEBS Lett; 2006 Jan 09; 580(1):319-23. PubMed ID: 16376888
    [Abstract] [Full Text] [Related]

  • 17. The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase.
    Larisch C, Nakunst D, Hüser AT, Tauch A, Kalinowski J.
    BMC Genomics; 2007 Jan 04; 8():4. PubMed ID: 17204139
    [Abstract] [Full Text] [Related]

  • 18. MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development.
    Nariya H, Inouye M.
    Cell; 2008 Jan 11; 132(1):55-66. PubMed ID: 18191220
    [Abstract] [Full Text] [Related]

  • 19. FibA and PilA act cooperatively during fruiting body formation of Myxococcus xanthus.
    Bonner PJ, Black WP, Yang Z, Shimkets LJ.
    Mol Microbiol; 2006 Sep 11; 61(5):1283-93. PubMed ID: 16925559
    [Abstract] [Full Text] [Related]

  • 20. Development-specific sigma-factor essential for late-stage differentiation of Myxococcus xanthus.
    Apelian D, Inouye S.
    Genes Dev; 1990 Aug 11; 4(8):1396-403. PubMed ID: 2121605
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.