These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


407 related items for PubMed ID: 11327505

  • 21. In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays.
    Mercanzini A, Colin P, Bensadoun JC, Bertsch A, Renaud P.
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1909-18. PubMed ID: 19362904
    [Abstract] [Full Text] [Related]

  • 22. Design, in vitro and in vivo assessment of a multi-channel sieve electrode with integrated multiplexer.
    Ramachandran A, Schuettler M, Lago N, Doerge T, Koch KP, Navarro X, Hoffmann KP, Stieglitz T.
    J Neural Eng; 2006 Jun; 3(2):114-24. PubMed ID: 16705267
    [Abstract] [Full Text] [Related]

  • 23. Microelectrode array on folding polyimide ribbon for epidural mapping of functional evoked potentials.
    Takahashi H, Ejiri T, Nakao M, Nakamura N, Kaga K, Hervé T.
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):510-6. PubMed ID: 12723063
    [Abstract] [Full Text] [Related]

  • 24. Insulation lifetime improvement of polyimide thin film neural implants.
    Ceyssens F, Puers R.
    J Neural Eng; 2015 Oct; 12(5):054001. PubMed ID: 26269487
    [Abstract] [Full Text] [Related]

  • 25. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording.
    Rodrigues F, Ribeiro JF, Anacleto PA, Fouchard A, David O, Sarro PM, Mendes PM.
    J Neural Eng; 2019 Dec 13; 17(1):016010. PubMed ID: 31614339
    [Abstract] [Full Text] [Related]

  • 26. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW, Seo JM, Ha S, Kim ET, Chung H, Kim SJ.
    Invest Ophthalmol Vis Sci; 2009 Dec 13; 50(12):5859-66. PubMed ID: 19553608
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve.
    Boretius T, Badia J, Pascual-Font A, Schuettler M, Navarro X, Yoshida K, Stieglitz T.
    Biosens Bioelectron; 2010 Sep 15; 26(1):62-9. PubMed ID: 20627510
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP, Rajdev P, Ellison C, Irazoqui PP.
    Brain Res; 2009 Jul 28; 1282():183-200. PubMed ID: 19486899
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S, Fellows MR, Vargas-Irwin C, Nakata GK, Donoghue JP.
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec 28; 13(4):524-41. PubMed ID: 16425835
    [Abstract] [Full Text] [Related]

  • 37. Magnetic resonance compatibility of multichannel silicon microelectrode systems for neural recording and stimulation: design criteria, tests, and recommendations.
    Martínez Santiesteban FM, Swanson SD, Noll DC, Anderson DJ.
    IEEE Trans Biomed Eng; 2006 Mar 28; 53(3):547-58. PubMed ID: 16532782
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Multi-site incorporation of bioactive matrices into MEMS-based neural probes.
    Williams JC, Holecko MM, Massia SP, Rousche P, Kipke DR.
    J Neural Eng; 2005 Dec 28; 2(4):L23-8. PubMed ID: 16317225
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 21.